Spaces:
Running
Running
Update ocr_engine.py
Browse files- ocr_engine.py +84 -24
ocr_engine.py
CHANGED
@@ -2,69 +2,129 @@ import easyocr
|
|
2 |
import numpy as np
|
3 |
import cv2
|
4 |
import re
|
5 |
-
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
def enhance_image(img):
|
9 |
-
|
|
|
|
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
contrast = clahe.apply(gray)
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
sharpened = cv2.resize(sharpened, None, fx=2, fy=2, interpolation=cv2.INTER_CUBIC)
|
23 |
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
def extract_weight_from_image(pil_img):
|
27 |
try:
|
28 |
img = np.array(pil_img)
|
29 |
-
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
|
|
|
|
|
|
|
|
30 |
|
31 |
# Preprocess image
|
32 |
processed = enhance_image(img)
|
33 |
|
34 |
-
|
35 |
-
|
36 |
best_weight = None
|
37 |
best_conf = 0.0
|
38 |
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
original_text = text
|
41 |
text = text.lower().strip()
|
42 |
|
43 |
# Fix common OCR errors
|
44 |
-
text = text.replace(",", ".")
|
45 |
text = text.replace("o", "0").replace("O", "0")
|
46 |
text = text.replace("s", "5").replace("S", "5")
|
47 |
text = text.replace("g", "9").replace("G", "6")
|
48 |
-
text = text.replace("
|
|
|
|
|
49 |
text = re.sub(r"[^\d\.]", "", text)
|
50 |
|
51 |
-
|
52 |
-
|
|
|
53 |
best_weight = text
|
54 |
best_conf = conf
|
55 |
|
56 |
if not best_weight:
|
|
|
57 |
return "Not detected", 0.0
|
58 |
|
59 |
# Format output
|
60 |
if "." in best_weight:
|
61 |
int_part, dec_part = best_weight.split(".")
|
62 |
int_part = int_part.lstrip("0") or "0"
|
63 |
-
best_weight = f"{int_part}.{dec_part}"
|
64 |
else:
|
65 |
best_weight = best_weight.lstrip("0") or "0"
|
66 |
|
67 |
return best_weight, round(best_conf * 100, 2)
|
68 |
|
69 |
except Exception as e:
|
70 |
-
|
|
|
|
2 |
import numpy as np
|
3 |
import cv2
|
4 |
import re
|
5 |
+
import logging
|
6 |
+
from mmocr.utils.ocr import MMOCR
|
7 |
+
|
8 |
+
# Set up logging for debugging
|
9 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
10 |
+
|
11 |
+
# Initialize OCR engines
|
12 |
+
easyocr_reader = easyocr.Reader(['en'], gpu=False)
|
13 |
+
try:
|
14 |
+
mmocr_reader = MMOCR(det='DB_r18', recog='CRNN')
|
15 |
+
except:
|
16 |
+
mmocr_reader = None
|
17 |
+
logging.warning("MMOCR initialization failed, falling back to EasyOCR only")
|
18 |
+
|
19 |
+
def estimate_blur(img):
|
20 |
+
"""Estimate image blur using Laplacian variance"""
|
21 |
+
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
22 |
+
return cv2.Laplacian(gray, cv2.CV_64F).var()
|
23 |
|
24 |
def enhance_image(img):
|
25 |
+
try:
|
26 |
+
# Convert to grayscale
|
27 |
+
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
28 |
|
29 |
+
# Bilateral filter for noise reduction while preserving edges
|
30 |
+
denoised = cv2.bilateralFilter(gray, d=9, sigmaColor=75, sigmaSpace=75)
|
|
|
31 |
|
32 |
+
# CLAHE for contrast enhancement
|
33 |
+
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
|
34 |
+
contrast = clahe.apply(denoised)
|
35 |
|
36 |
+
# Adaptive thresholding for uneven lighting
|
37 |
+
thresh = cv2.adaptiveThreshold(contrast, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
38 |
+
cv2.THRESH_BINARY, 11, 2)
|
|
|
39 |
|
40 |
+
# Morphological operations to enhance text
|
41 |
+
kernel = np.ones((3, 3), np.uint8)
|
42 |
+
morphed = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=1)
|
43 |
+
|
44 |
+
# Sharpen image
|
45 |
+
sharpen_kernel = np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]])
|
46 |
+
sharpened = cv2.filter2D(morphed, -1, sharpen_kernel)
|
47 |
+
|
48 |
+
# Dynamic resizing
|
49 |
+
h, w = sharpened.shape
|
50 |
+
target_size = 800 # Target max dimension for OCR
|
51 |
+
scale_factor = min(target_size / max(h, w), 2.0) if max(h, w) < 300 else min(target_size / max(h, w), 1.0)
|
52 |
+
if scale_factor != 1.0:
|
53 |
+
sharpened = cv2.resize(sharpened, None, fx=scale_factor, fy=scale_factor,
|
54 |
+
interpolation=cv2.INTER_CUBIC if scale_factor > 1 else cv2.INTER_AREA)
|
55 |
+
|
56 |
+
return sharpened
|
57 |
+
except Exception as e:
|
58 |
+
logging.error(f"Image enhancement failed: {str(e)}")
|
59 |
+
return img # Return original image as fallback
|
60 |
|
61 |
def extract_weight_from_image(pil_img):
|
62 |
try:
|
63 |
img = np.array(pil_img)
|
64 |
+
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
65 |
+
|
66 |
+
# Estimate blur to adjust confidence threshold
|
67 |
+
blur_score = estimate_blur(img)
|
68 |
+
conf_threshold = 0.3 if blur_score < 100 else 0.5 # Lower threshold for blurry images
|
69 |
|
70 |
# Preprocess image
|
71 |
processed = enhance_image(img)
|
72 |
|
73 |
+
# Initialize results
|
|
|
74 |
best_weight = None
|
75 |
best_conf = 0.0
|
76 |
|
77 |
+
# EasyOCR detection
|
78 |
+
easyocr_results = easyocr_reader.readtext(processed, detail=1, paragraph=False)
|
79 |
+
if not easyocr_results: # Fallback to original image if no results
|
80 |
+
easyocr_results = easyocr_reader.readtext(img, detail=1, paragraph=False)
|
81 |
+
|
82 |
+
# MMOCR detection (if available)
|
83 |
+
mmocr_results = []
|
84 |
+
if mmocr_reader:
|
85 |
+
try:
|
86 |
+
mmocr_result = mmocr_reader.readtext(processed)
|
87 |
+
mmocr_results = [(bbox, text, score) for bbox, text, score in mmocr_result]
|
88 |
+
except:
|
89 |
+
logging.warning("MMOCR processing failed, using EasyOCR results only")
|
90 |
+
|
91 |
+
# Combine results
|
92 |
+
all_results = easyocr_results + mmocr_results
|
93 |
+
|
94 |
+
for (bbox, text, conf) in all_results:
|
95 |
original_text = text
|
96 |
text = text.lower().strip()
|
97 |
|
98 |
# Fix common OCR errors
|
99 |
+
text = text.replace(",", ".").replace(";", ".")
|
100 |
text = text.replace("o", "0").replace("O", "0")
|
101 |
text = text.replace("s", "5").replace("S", "5")
|
102 |
text = text.replace("g", "9").replace("G", "6")
|
103 |
+
text = text.replace("l", "1").replace("I", "1")
|
104 |
+
text = text.replace("b", "8").replace("B", "8")
|
105 |
+
text = text.replace("kgs", "").replace("kg", "").replace("k9", "").replace("k", "")
|
106 |
text = re.sub(r"[^\d\.]", "", text)
|
107 |
|
108 |
+
# Stricter regex for weight (0.0 to 9999.999)
|
109 |
+
if re.fullmatch(r"\d{1,4}(\.\d{0,3})?", text):
|
110 |
+
if conf > best_conf and conf > conf_threshold:
|
111 |
best_weight = text
|
112 |
best_conf = conf
|
113 |
|
114 |
if not best_weight:
|
115 |
+
logging.info("No valid weight detected")
|
116 |
return "Not detected", 0.0
|
117 |
|
118 |
# Format output
|
119 |
if "." in best_weight:
|
120 |
int_part, dec_part = best_weight.split(".")
|
121 |
int_part = int_part.lstrip("0") or "0"
|
122 |
+
best_weight = f"{int_part}.{dec_part.rstrip('0')}"
|
123 |
else:
|
124 |
best_weight = best_weight.lstrip("0") or "0"
|
125 |
|
126 |
return best_weight, round(best_conf * 100, 2)
|
127 |
|
128 |
except Exception as e:
|
129 |
+
logging.error(f"Weight extraction failed: {str(e)}")
|
130 |
+
return "Not detected", 0.0
|