Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,59 +1,53 @@
|
|
1 |
import gradio as gr
|
2 |
-
from paddleocr import PaddleOCR
|
3 |
-
from PIL import Image
|
4 |
import numpy as np
|
|
|
5 |
import cv2
|
6 |
import re
|
|
|
7 |
from datetime import datetime
|
8 |
-
from pytz import timezone
|
9 |
-
|
10 |
-
ocr = PaddleOCR(use_angle_cls=False, lang='en') # cls removed
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
def detect_weight(image):
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
best_conf = conf
|
37 |
-
|
38 |
-
if best_match:
|
39 |
-
now_ist = datetime.now(timezone('Asia/Kolkata')).strftime("%Y-%m-%d %H:%M:%S IST")
|
40 |
-
return f"Weight: {best_match} kg (Confidence: {round(best_conf * 100, 2)}%)", now_ist, image
|
41 |
-
else:
|
42 |
-
return "No weight detected kg (Confidence: 0.0%)", "N/A", image
|
43 |
-
|
44 |
-
except Exception as e:
|
45 |
-
return f"Error: {str(e)}", "Error", None
|
46 |
-
|
47 |
-
with gr.Blocks() as demo:
|
48 |
-
gr.Markdown("## Auto Weight Logger\nUpload or capture a digital scale image. This app detects the weight automatically using AI.")
|
49 |
-
|
50 |
-
with gr.Row():
|
51 |
-
image_input = gr.Image(type="pil", label="Upload or Capture Weight Image", sources=["upload", "camera"])
|
52 |
-
with gr.Column():
|
53 |
-
output_text = gr.Textbox(label="Detected Weight")
|
54 |
-
output_time = gr.Textbox(label="Captured At (IST)")
|
55 |
-
snapshot_output = gr.Image(label="📷 Snapshot")
|
56 |
-
|
57 |
-
image_input.change(fn=detect_weight, inputs=image_input, outputs=[output_text, output_time, snapshot_output])
|
58 |
-
|
59 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
import cv2
|
5 |
import re
|
6 |
+
from paddleocr import PaddleOCR
|
7 |
from datetime import datetime
|
|
|
|
|
|
|
8 |
|
9 |
+
# Initialize OCR model once
|
10 |
+
ocr = PaddleOCR(use_angle_cls=True, lang='en')
|
11 |
+
|
12 |
+
# Preprocessing: Convert to grayscale and threshold
|
13 |
+
def preprocess_image(image):
|
14 |
+
img = np.array(image.convert("RGB"))
|
15 |
+
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
|
16 |
+
_, thresh = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY)
|
17 |
+
return Image.fromarray(thresh)
|
18 |
+
|
19 |
+
# OCR detection + regex filtering
|
20 |
+
def extract_weight_text(image):
|
21 |
+
results = ocr.ocr(np.array(image), cls=True)
|
22 |
+
for line in results[0]:
|
23 |
+
text = line[1][0]
|
24 |
+
match = re.search(r"\d+\.\d+", text)
|
25 |
+
if match:
|
26 |
+
return match.group()
|
27 |
+
return None
|
28 |
+
|
29 |
+
# Main function
|
30 |
def detect_weight(image):
|
31 |
+
if image is None:
|
32 |
+
return "No image uploaded.", "", None
|
33 |
+
pre_img = preprocess_image(image)
|
34 |
+
weight = extract_weight_text(pre_img)
|
35 |
+
if weight:
|
36 |
+
return f"Detected Weight: {weight} kg", datetime.now().strftime("Captured At: %Y-%m-%d %H:%M:%S"), pre_img
|
37 |
+
else:
|
38 |
+
return "Weight Not Detected", "", pre_img
|
39 |
+
|
40 |
+
# Gradio UI
|
41 |
+
interface = gr.Interface(
|
42 |
+
fn=detect_weight,
|
43 |
+
inputs=gr.Image(type="pil", label="Upload or Capture Image"),
|
44 |
+
outputs=[
|
45 |
+
gr.Textbox(label="Weight"),
|
46 |
+
gr.Textbox(label="Timestamp"),
|
47 |
+
gr.Image(label="Preprocessed Image")
|
48 |
+
],
|
49 |
+
title="Auto Weight Logger",
|
50 |
+
description="Upload or click image of digital scale. It will detect and show the weight (kg).",
|
51 |
+
)
|
52 |
+
|
53 |
+
interface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|