Sanjayraju30 commited on
Commit
8b5815c
·
verified ·
1 Parent(s): e2bed73

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +19 -12
app.py CHANGED
@@ -1,34 +1,41 @@
1
  import gradio as gr
2
- from PIL import Image
3
  import torch
4
  from transformers import TrOCRProcessor, VisionEncoderDecoderModel
5
  from datetime import datetime
6
  import pytz
 
7
 
8
- # Load the model and processor from Hugging Face
9
  processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-stage1")
10
  model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-stage1")
11
 
12
- # Function to detect weight text from image
 
 
 
 
 
 
 
 
 
13
  def detect_weight(image):
14
  try:
15
- # Preprocess image
16
- pixel_values = processor(images=image, return_tensors="pt").pixel_values
17
- # Run model
18
  generated_ids = model.generate(pixel_values)
19
  generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
20
 
21
- # Try to extract weight-like number
22
- import re
23
- match = re.search(r"(\d{1,3}(\.\d{1,2})?)", generated_text)
24
  weight = match.group(1) if match else "Not detected"
25
 
26
- # Get IST time
27
  ist = pytz.timezone('Asia/Kolkata')
28
  current_time = datetime.now(ist).strftime("%Y-%m-%d %H:%M:%S")
29
 
30
  return f"Weight: {weight} kg\nCaptured At: {current_time}", image
31
-
32
  except Exception as e:
33
  return f"Error: {str(e)}", image
34
 
@@ -38,7 +45,7 @@ interface = gr.Interface(
38
  inputs=gr.Image(type="pil", label="Upload or Capture Image"),
39
  outputs=[gr.Textbox(label="Weight Info"), gr.Image(label="Snapshot")],
40
  title="⚖️ Auto Weight Detector (No Tesseract)",
41
- description="Detects weight from digital scale image using AI-based OCR (no Tesseract)."
42
  )
43
 
44
  interface.launch()
 
1
  import gradio as gr
2
+ from PIL import Image, ImageEnhance, ImageOps
3
  import torch
4
  from transformers import TrOCRProcessor, VisionEncoderDecoderModel
5
  from datetime import datetime
6
  import pytz
7
+ import re
8
 
9
+ # Load model and processor
10
  processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-stage1")
11
  model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-stage1")
12
 
13
+ # Enhance image before OCR
14
+ def enhance_image(image):
15
+ image = image.convert("L") # grayscale
16
+ image = ImageOps.invert(image) # invert colors
17
+ image = ImageEnhance.Contrast(image).enhance(2) # boost contrast
18
+ image = ImageEnhance.Sharpness(image).enhance(2) # sharpen
19
+ image = image.resize((image.width * 2, image.height * 2)) # enlarge
20
+ return image
21
+
22
+ # Extract weight
23
  def detect_weight(image):
24
  try:
25
+ processed_image = enhance_image(image)
26
+ pixel_values = processor(images=processed_image, return_tensors="pt").pixel_values
 
27
  generated_ids = model.generate(pixel_values)
28
  generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
29
 
30
+ # Extract number
31
+ match = re.search(r"(\d{1,4}(?:\.\d{1,2})?)", generated_text)
 
32
  weight = match.group(1) if match else "Not detected"
33
 
34
+ # Timestamp
35
  ist = pytz.timezone('Asia/Kolkata')
36
  current_time = datetime.now(ist).strftime("%Y-%m-%d %H:%M:%S")
37
 
38
  return f"Weight: {weight} kg\nCaptured At: {current_time}", image
 
39
  except Exception as e:
40
  return f"Error: {str(e)}", image
41
 
 
45
  inputs=gr.Image(type="pil", label="Upload or Capture Image"),
46
  outputs=[gr.Textbox(label="Weight Info"), gr.Image(label="Snapshot")],
47
  title="⚖️ Auto Weight Detector (No Tesseract)",
48
+ description="Detects weight from digital scale image using Hugging Face TrOCR."
49
  )
50
 
51
  interface.launch()