Spaces:
Running
Running
Update ocr_engine.py
Browse files- ocr_engine.py +293 -157
ocr_engine.py
CHANGED
@@ -5,13 +5,11 @@ import re
|
|
5 |
import logging
|
6 |
from datetime import datetime
|
7 |
import os
|
8 |
-
from PIL import Image, ImageEnhance
|
9 |
-
import pytesseract
|
10 |
|
11 |
-
# Set up logging for
|
12 |
-
logging.basicConfig(level=logging.
|
13 |
|
14 |
-
# Initialize EasyOCR
|
15 |
easyocr_reader = easyocr.Reader(['en'], gpu=False)
|
16 |
|
17 |
# Directory for debug images
|
@@ -26,188 +24,326 @@ def save_debug_image(img, filename_suffix, prefix=""):
|
|
26 |
cv2.imwrite(filename, img)
|
27 |
else: # Grayscale image
|
28 |
cv2.imwrite(filename, img)
|
29 |
-
logging.
|
30 |
|
31 |
def estimate_brightness(img):
|
32 |
-
"""Estimate image brightness to
|
33 |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
34 |
-
|
35 |
-
logging.debug(f"Estimated brightness: {brightness}")
|
36 |
-
return brightness
|
37 |
|
38 |
-
def
|
39 |
-
"""
|
40 |
-
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
41 |
-
# Multiple sharpening passes
|
42 |
-
for _ in range(2):
|
43 |
-
kernel = np.array([[-1, -1, -1], [-1, 9, -1], [-1, -1, -1]])
|
44 |
-
gray = cv2.filter2D(gray, -1, kernel)
|
45 |
-
gray = np.clip(gray, 0, 255).astype(np.uint8)
|
46 |
-
save_debug_image(gray, "00_deblurred")
|
47 |
-
return gray
|
48 |
-
|
49 |
-
def preprocess_image(img):
|
50 |
-
"""Enhance image for digit detection under adverse conditions"""
|
51 |
-
# PIL enhancement
|
52 |
-
pil_img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
53 |
-
pil_img = ImageEnhance.Contrast(pil_img).enhance(3.0) # Extreme contrast
|
54 |
-
pil_img = ImageEnhance.Brightness(pil_img).enhance(1.8) # Strong brightness
|
55 |
-
img_enhanced = cv2.cvtColor(np.array(pil_img), cv2.COLOR_RGB2BGR)
|
56 |
-
save_debug_image(img_enhanced, "00_preprocessed_pil")
|
57 |
-
|
58 |
-
# Deblur
|
59 |
-
deblurred = deblur_image(img_enhanced)
|
60 |
-
|
61 |
-
# CLAHE for local contrast
|
62 |
-
clahe = cv2.createCLAHE(clipLimit=4.0, tileGridSize=(8, 8))
|
63 |
-
enhanced = clahe.apply(deblurred)
|
64 |
-
save_debug_image(enhanced, "00_clahe_enhanced")
|
65 |
-
|
66 |
-
# Noise reduction
|
67 |
-
filtered = cv2.bilateralFilter(enhanced, d=17, sigmaColor=200, sigmaSpace=200)
|
68 |
-
save_debug_image(filtered, "00_bilateral_filtered")
|
69 |
-
|
70 |
-
# Morphological cleaning
|
71 |
-
kernel = np.ones((5, 5), np.uint8)
|
72 |
-
filtered = cv2.morphologyEx(filtered, cv2.MORPH_OPEN, kernel, iterations=2)
|
73 |
-
save_debug_image(filtered, "00_morph_cleaned")
|
74 |
-
return filtered
|
75 |
-
|
76 |
-
def normalize_image(img):
|
77 |
-
"""Resize image to ensure digits are detectable"""
|
78 |
-
h, w = img.shape[:2]
|
79 |
-
target_height = 1080 # High resolution for small digits
|
80 |
-
aspect_ratio = w / h
|
81 |
-
target_width = int(target_height * aspect_ratio)
|
82 |
-
if target_width < 480:
|
83 |
-
target_width = 480
|
84 |
-
target_height = int(target_width / aspect_ratio)
|
85 |
-
resized = cv2.resize(img, (target_width, target_height), interpolation=cv2.INTER_CUBIC)
|
86 |
-
save_debug_image(resized, "00_normalized")
|
87 |
-
logging.debug(f"Normalized image to {target_width}x{target_height}")
|
88 |
-
return resized
|
89 |
-
|
90 |
-
def tesseract_ocr(img):
|
91 |
-
"""Fallback OCR using Tesseract"""
|
92 |
try:
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
except Exception as e:
|
98 |
-
logging.error(f"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
return None
|
100 |
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
|
|
|
|
|
|
107 |
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
-
|
114 |
-
|
115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
-
# EasyOCR attempt
|
132 |
results = easyocr_reader.readtext(thresh, detail=1, paragraph=False,
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
|
137 |
logging.info(f"EasyOCR results: {results}")
|
138 |
-
|
139 |
-
if results:
|
140 |
-
# Sort by x-coordinate for left-to-right reading
|
141 |
-
sorted_results = sorted(results, key=lambda x: x[0][0][0])
|
142 |
-
for _, text, conf in sorted_results:
|
143 |
-
logging.info(f"EasyOCR detected: {text}, Confidence: {conf}")
|
144 |
-
if conf > conf_threshold and any(c in '0123456789.-' for c in text):
|
145 |
-
recognized_text += text
|
146 |
-
else:
|
147 |
logging.info("EasyOCR found no digits.")
|
|
|
148 |
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
|
|
|
|
155 |
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
|
|
|
|
171 |
|
|
|
|
|
172 |
if text.count('.') > 1:
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
logging.info(f"
|
183 |
-
|
184 |
-
|
185 |
-
|
|
|
186 |
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
int_part = int_part.lstrip("0") or "0"
|
196 |
dec_part = dec_part.rstrip('0')
|
197 |
if not dec_part and int_part != "0":
|
198 |
-
|
199 |
elif not dec_part and int_part == "0":
|
200 |
-
|
201 |
else:
|
202 |
-
|
203 |
else:
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
return "Not detected", 0.0
|
210 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
211 |
except Exception as e:
|
212 |
logging.error(f"Weight extraction failed unexpectedly: {str(e)}")
|
213 |
return "Not detected", 0.0
|
|
|
5 |
import logging
|
6 |
from datetime import datetime
|
7 |
import os
|
|
|
|
|
8 |
|
9 |
+
# Set up logging for debugging
|
10 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
11 |
|
12 |
+
# Initialize EasyOCR
|
13 |
easyocr_reader = easyocr.Reader(['en'], gpu=False)
|
14 |
|
15 |
# Directory for debug images
|
|
|
24 |
cv2.imwrite(filename, img)
|
25 |
else: # Grayscale image
|
26 |
cv2.imwrite(filename, img)
|
27 |
+
logging.info(f"Saved debug image: {filename}")
|
28 |
|
29 |
def estimate_brightness(img):
|
30 |
+
"""Estimate image brightness to detect illuminated displays"""
|
31 |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
32 |
+
return np.mean(gray)
|
|
|
|
|
33 |
|
34 |
+
def detect_roi(img):
|
35 |
+
"""Detect and crop the region of interest (likely the digital display)"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
try:
|
37 |
+
save_debug_image(img, "01_original")
|
38 |
+
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
39 |
+
save_debug_image(gray, "02_grayscale")
|
40 |
+
|
41 |
+
# Use adaptive thresholding for better robustness
|
42 |
+
thresh = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
43 |
+
cv2.THRESH_BINARY, 11, 2)
|
44 |
+
save_debug_image(thresh, "03_roi_adaptive_threshold")
|
45 |
+
|
46 |
+
kernel = np.ones((7, 7), np.uint8) # Smaller kernel
|
47 |
+
dilated = cv2.dilate(thresh, kernel, iterations=3) # Fewer iterations
|
48 |
+
save_debug_image(dilated, "04_roi_dilated")
|
49 |
+
|
50 |
+
contours, _ = cv2.findContours(dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
51 |
+
|
52 |
+
if contours:
|
53 |
+
img_area = img.shape[0] * img.shape[1]
|
54 |
+
valid_contours = []
|
55 |
+
for c in contours:
|
56 |
+
area = cv2.contourArea(c)
|
57 |
+
# Relaxed area and aspect ratio filters
|
58 |
+
if 500 < area < (img_area * 0.95):
|
59 |
+
x, y, w, h = cv2.boundingRect(c)
|
60 |
+
aspect_ratio = w / h
|
61 |
+
if 1.5 <= aspect_ratio <= 6.0 and w > 80 and h > 40:
|
62 |
+
valid_contours.append(c)
|
63 |
+
|
64 |
+
if valid_contours:
|
65 |
+
for contour in sorted(valid_contours, key=cv2.contourArea, reverse=True):
|
66 |
+
x, y, w, h = cv2.boundingRect(contour)
|
67 |
+
padding = 60 # Increased padding
|
68 |
+
x, y = max(0, x - padding), max(0, y - padding)
|
69 |
+
w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y)
|
70 |
+
roi_img = img[y:y+h, x:x+w]
|
71 |
+
save_debug_image(roi_img, "05_detected_roi")
|
72 |
+
logging.info(f"Detected ROI with dimensions: ({x}, {y}, {w}, {h})")
|
73 |
+
return roi_img, (x, y, w, h)
|
74 |
+
|
75 |
+
logging.info("No suitable ROI found, returning original image.")
|
76 |
+
save_debug_image(img, "05_no_roi_original_fallback")
|
77 |
+
return img, None
|
78 |
except Exception as e:
|
79 |
+
logging.error(f"ROI detection failed: {str(e)}")
|
80 |
+
save_debug_image(img, "05_roi_detection_error_fallback")
|
81 |
+
return img, None
|
82 |
+
|
83 |
+
def detect_segments(digit_img):
|
84 |
+
"""Detect seven-segment patterns in a digit image"""
|
85 |
+
h, w = digit_img.shape
|
86 |
+
if h < 15 or w < 10:
|
87 |
return None
|
88 |
|
89 |
+
segments = {
|
90 |
+
'top': (int(w*0.15), int(w*0.85), 0, int(h*0.2)),
|
91 |
+
'middle': (int(w*0.15), int(w*0.85), int(h*0.4), int(h*0.6)),
|
92 |
+
'bottom': (int(w*0.15), int(w*0.85), int(h*0.8), h),
|
93 |
+
'left_top': (0, int(w*0.25), int(h*0.05), int(h*0.5)),
|
94 |
+
'left_bottom': (0, int(w*0.25), int(h*0.5), int(h*0.95)),
|
95 |
+
'right_top': (int(w*0.75), w, int(h*0.05), int(h*0.5)),
|
96 |
+
'right_bottom': (int(w*0.75), w, int(h*0.5), int(h*0.95))
|
97 |
+
}
|
98 |
|
99 |
+
segment_presence = {}
|
100 |
+
for name, (x1, x2, y1, y2) in segments.items():
|
101 |
+
x1, y1 = max(0, x1), max(0, y1)
|
102 |
+
x2, y2 = min(w, x2), min(h, y2)
|
103 |
+
region = digit_img[y1:y2, x1:x2]
|
104 |
+
if region.size == 0:
|
105 |
+
segment_presence[name] = False
|
106 |
+
continue
|
107 |
+
pixel_count = np.sum(region == 255)
|
108 |
+
total_pixels = region.size
|
109 |
+
segment_presence[name] = pixel_count / total_pixels > 0.45 # Lowered threshold
|
110 |
|
111 |
+
digit_patterns = {
|
112 |
+
'0': ('top', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'),
|
113 |
+
'1': ('right_top', 'right_bottom'),
|
114 |
+
'2': ('top', 'middle', 'bottom', 'left_bottom', 'right_top'),
|
115 |
+
'3': ('top', 'middle', 'bottom', 'right_top', 'right_bottom'),
|
116 |
+
'4': ('middle', 'left_top', 'right_top', 'right_bottom'),
|
117 |
+
'5': ('top', 'middle', 'bottom', 'left_top', 'right_bottom'),
|
118 |
+
'6': ('top', 'middle', 'bottom', 'left_top', 'left_bottom', 'right_bottom'),
|
119 |
+
'7': ('top', 'right_top', 'right_bottom'),
|
120 |
+
'8': ('top', 'middle', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'),
|
121 |
+
'9': ('top', 'middle', 'bottom', 'left_top', 'right_top', 'right_bottom')
|
122 |
+
}
|
123 |
|
124 |
+
best_match = None
|
125 |
+
max_score = -1
|
126 |
+
for digit, pattern in digit_patterns.items():
|
127 |
+
matches = sum(1 for segment in pattern if segment_presence.get(segment, False))
|
128 |
+
non_matches_penalty = sum(1 for segment in segment_presence if segment not in pattern and segment_presence[segment])
|
129 |
+
current_score = matches - non_matches_penalty
|
130 |
+
if all(segment_presence.get(s, False) for s in pattern):
|
131 |
+
current_score += 0.5
|
132 |
+
if current_score > max_score:
|
133 |
+
max_score = current_score
|
134 |
+
best_match = digit
|
135 |
+
elif current_score == max_score and best_match is not None:
|
136 |
+
current_digit_non_matches = sum(1 for segment in segment_presence if segment not in pattern and segment_presence[segment])
|
137 |
+
best_digit_pattern = digit_patterns[best_match]
|
138 |
+
best_digit_non_matches = sum(1 for segment in segment_presence if segment not in best_digit_pattern and segment_presence[segment])
|
139 |
+
if current_digit_non_matches < best_digit_non_matches:
|
140 |
+
best_match = digit
|
141 |
+
|
142 |
+
logging.debug(f"Segment presence: {segment_presence}, Detected digit: {best_match}")
|
143 |
+
return best_match
|
144 |
|
145 |
+
def custom_seven_segment_ocr(img, roi_bbox):
|
146 |
+
"""Perform custom OCR for seven-segment displays"""
|
147 |
+
try:
|
148 |
+
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
149 |
+
brightness = estimate_brightness(img)
|
150 |
+
if brightness > 150:
|
151 |
+
_, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
152 |
+
else:
|
153 |
+
_, thresh = cv2.threshold(gray, 80, 255, cv2.THRESH_BINARY) # Lower threshold
|
154 |
+
save_debug_image(thresh, "06_roi_thresh_for_digits")
|
155 |
|
|
|
156 |
results = easyocr_reader.readtext(thresh, detail=1, paragraph=False,
|
157 |
+
contrast_ths=0.2, adjust_contrast=0.8,
|
158 |
+
text_threshold=0.7, mag_ratio=2.0,
|
159 |
+
allowlist='0123456789.', y_ths=0.3)
|
160 |
|
161 |
logging.info(f"EasyOCR results: {results}")
|
162 |
+
if not results:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
logging.info("EasyOCR found no digits.")
|
164 |
+
return None
|
165 |
|
166 |
+
digits_info = []
|
167 |
+
for (bbox, text, conf) in results:
|
168 |
+
(x1, y1), (x2, y2), (x3, y3), (x4, y4) = bbox
|
169 |
+
h_bbox = max(y1, y2, y3, y4) - min(y1, y2, y3, y4)
|
170 |
+
if len(text) == 1 and (text.isdigit() or text == '.') and h_bbox > 8:
|
171 |
+
x_min, x_max = int(min(x1, x4)), int(max(x2, x3))
|
172 |
+
y_min, y_max = int(min(y1, y2)), int(max(y3, y4))
|
173 |
+
digits_info.append((x_min, x_max, y_min, y_max, text, conf))
|
174 |
|
175 |
+
digits_info.sort(key=lambda x: x[0])
|
176 |
+
recognized_text = ""
|
177 |
+
for idx, (x_min, x_max, y_min, y_max, easyocr_char, easyocr_conf) in enumerate(digits_info):
|
178 |
+
x_min, y_min = max(0, x_min), max(0, y_min)
|
179 |
+
x_max, y_max = min(thresh.shape[1], x_max), min(thresh.shape[0], y_max)
|
180 |
+
if x_max <= x_min or y_max <= y_min:
|
181 |
+
continue
|
182 |
+
digit_img_crop = thresh[y_min:y_max, x_min:x_max]
|
183 |
+
save_debug_image(digit_img_crop, f"07_digit_crop_{idx}_{easyocr_char}")
|
184 |
+
if easyocr_conf > 0.9 or easyocr_char == '.' or digit_img_crop.shape[0] < 15 or digit_img_crop.shape[1] < 10:
|
185 |
+
recognized_text += easyocr_char
|
186 |
+
else:
|
187 |
+
digit_from_segments = detect_segments(digit_img_crop)
|
188 |
+
if digit_from_segments:
|
189 |
+
recognized_text += digit_from_segments
|
190 |
+
else:
|
191 |
+
recognized_text += easyocr_char
|
192 |
|
193 |
+
logging.info(f"Before validation, recognized_text: {recognized_text}")
|
194 |
+
text = re.sub(r"[^\d\.]", "", recognized_text)
|
195 |
if text.count('.') > 1:
|
196 |
+
text = text.replace('.', '', text.count('.') - 1)
|
197 |
+
if text and re.fullmatch(r"^\d*\.?\d*$", text) and len(text) > 0:
|
198 |
+
if text.startswith('.'):
|
199 |
+
text = "0" + text
|
200 |
+
if text.endswith('.'):
|
201 |
+
text = text.rstrip('.')
|
202 |
+
if text == '.' or text == '':
|
203 |
+
return None
|
204 |
+
return text
|
205 |
+
logging.info(f"Custom OCR text '{recognized_text}' failed validation.")
|
206 |
+
return None
|
207 |
+
except Exception as e:
|
208 |
+
logging.error(f"Custom seven-segment OCR failed: {str(e)}")
|
209 |
+
return None
|
210 |
|
211 |
+
def extract_weight_from_image(pil_img):
|
212 |
+
"""Extract weight from a PIL image of a digital scale display"""
|
213 |
+
try:
|
214 |
+
img = np.array(pil_img)
|
215 |
+
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
216 |
+
save_debug_image(img, "00_input_image") # Log input image
|
217 |
+
|
218 |
+
brightness = estimate_brightness(img)
|
219 |
+
conf_threshold = 0.6 if brightness > 150 else (0.5 if brightness > 80 else 0.4)
|
220 |
+
|
221 |
+
roi_img, roi_bbox = detect_roi(img)
|
222 |
+
custom_result = custom_seven_segment_ocr(roi_img, roi_bbox)
|
223 |
+
if custom_result:
|
224 |
+
if "." in custom_result:
|
225 |
+
int_part, dec_part = custom_result.split(".")
|
226 |
int_part = int_part.lstrip("0") or "0"
|
227 |
dec_part = dec_part.rstrip('0')
|
228 |
if not dec_part and int_part != "0":
|
229 |
+
custom_result = int_part
|
230 |
elif not dec_part and int_part == "0":
|
231 |
+
custom_result = "0"
|
232 |
else:
|
233 |
+
custom_result = f"{int_part}.{dec_part}"
|
234 |
else:
|
235 |
+
custom_result = custom_result.lstrip('0') or "0"
|
236 |
+
try:
|
237 |
+
float(custom_result)
|
238 |
+
logging.info(f"Custom OCR result: {custom_result}, Confidence: 100.0%")
|
239 |
+
return custom_result, 100.0
|
240 |
+
except ValueError:
|
241 |
+
logging.warning(f"Custom OCR result '{custom_result}' is not a valid number, falling back.")
|
242 |
+
custom_result = None
|
243 |
+
|
244 |
+
logging.info("Custom OCR failed or invalid, falling back to general EasyOCR.")
|
245 |
+
processed_roi_img_gray = cv2.cvtColor(roi_img, cv2.COLOR_BGR2GRAY)
|
246 |
+
kernel_sharpening = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]])
|
247 |
+
sharpened_roi = cv2.filter2D(processed_roi_img_gray, -1, kernel_sharpening)
|
248 |
+
save_debug_image(sharpened_roi, "08_fallback_sharpened")
|
249 |
+
processed_roi_img_final = cv2.adaptiveThreshold(sharpened_roi, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
250 |
+
cv2.THRESH_BINARY, 21, 5)
|
251 |
+
save_debug_image(processed_roi_img_final, "09_fallback_adaptive_thresh")
|
252 |
+
|
253 |
+
results = easyocr_reader.readtext(processed_roi_img_final, detail=1, paragraph=False,
|
254 |
+
contrast_ths=0.3, adjust_contrast=0.9,
|
255 |
+
text_threshold=0.5, mag_ratio=2.0,
|
256 |
+
allowlist='0123456789.', batch_size=4, y_ths=0.3)
|
257 |
+
|
258 |
+
best_weight = None
|
259 |
+
best_conf = 0.0
|
260 |
+
best_score = 0.0
|
261 |
+
for (bbox, text, conf) in results:
|
262 |
+
text = text.lower().strip()
|
263 |
+
text = text.replace(",", ".").replace(";", ".").replace(":", ".").replace(" ", "")
|
264 |
+
text = text.replace("o", "0").replace("O", "0").replace("q", "0").replace("Q", "0")
|
265 |
+
text = text.replace("s", "5").replace("S", "5")
|
266 |
+
text = text.replace("g", "9").replace("G", "6")
|
267 |
+
text = text.replace("l", "1").replace("I", "1").replace("|", "1")
|
268 |
+
text = text.replace("b", "8").replace("B", "8")
|
269 |
+
text = text.replace("z", "2").replace("Z", "2")
|
270 |
+
text = text.replace("a", "4").replace("A", "4")
|
271 |
+
text = text.replace("e", "3")
|
272 |
+
text = text.replace("t", "7")
|
273 |
+
text = text.replace("~", "").replace("`", "")
|
274 |
+
text = re.sub(r"(kgs|kg|k|lb|g|gr|pounds|lbs)\b", "", text)
|
275 |
+
text = re.sub(r"[^\d\.]", "", text)
|
276 |
+
if text.count('.') > 1:
|
277 |
+
parts = text.split('.')
|
278 |
+
text = parts[0] + '.' + ''.join(parts[1:])
|
279 |
+
text = text.strip('.')
|
280 |
+
if re.fullmatch(r"^\d*\.?\d{0,3}$", text) and len(text.replace('.', '')) > 0:
|
281 |
+
try:
|
282 |
+
weight = float(text)
|
283 |
+
range_score = 1.0
|
284 |
+
if 0.1 <= weight <= 250:
|
285 |
+
range_score = 1.5
|
286 |
+
elif weight > 250 and weight <= 500:
|
287 |
+
range_score = 1.2
|
288 |
+
elif weight > 500 and weight <= 1000:
|
289 |
+
range_score = 1.0
|
290 |
+
else:
|
291 |
+
range_score = 0.5
|
292 |
+
digit_count = len(text.replace('.', ''))
|
293 |
+
digit_score = 1.0
|
294 |
+
if digit_count >= 2 and digit_count <= 5:
|
295 |
+
digit_score = 1.3
|
296 |
+
elif digit_count == 1:
|
297 |
+
digit_score = 0.8
|
298 |
+
score = conf * range_score * digit_score
|
299 |
+
if roi_bbox:
|
300 |
+
(x_roi, y_roi, w_roi, h_roi) = roi_bbox
|
301 |
+
roi_area = w_roi * h_roi
|
302 |
+
x_min, y_min = int(min(b[0] for b in bbox)), int(min(b[1] for b in bbox))
|
303 |
+
x_max, y_max = int(max(b[0] for b in bbox)), int(max(b[1] for b in bbox))
|
304 |
+
bbox_area = (x_max - x_min) * (y_max - y_min)
|
305 |
+
if roi_area > 0 and bbox_area / roi_area < 0.03:
|
306 |
+
score *= 0.5
|
307 |
+
bbox_aspect_ratio = (x_max - x_min) / (y_max - y_min) if (y_max - y_min) > 0 else 0
|
308 |
+
if bbox_aspect_ratio < 0.2:
|
309 |
+
score *= 0.7
|
310 |
+
if score > best_score and conf > conf_threshold:
|
311 |
+
best_weight = text
|
312 |
+
best_conf = conf
|
313 |
+
best_score = score
|
314 |
+
logging.info(f"Candidate EasyOCR weight: '{text}', Conf: {conf}, Score: {score}")
|
315 |
+
except ValueError:
|
316 |
+
logging.warning(f"Could not convert '{text}' to float during EasyOCR fallback.")
|
317 |
+
continue
|
318 |
+
|
319 |
+
if not best_weight:
|
320 |
+
logging.info("No valid weight detected after all attempts.")
|
321 |
return "Not detected", 0.0
|
322 |
|
323 |
+
if "." in best_weight:
|
324 |
+
int_part, dec_part = best_weight.split(".")
|
325 |
+
int_part = int_part.lstrip("0") or "0"
|
326 |
+
dec_part = dec_part.rstrip('0')
|
327 |
+
if not dec_part and int_part != "0":
|
328 |
+
best_weight = int_part
|
329 |
+
elif not dec_part and int_part == "0":
|
330 |
+
best_weight = "0"
|
331 |
+
else:
|
332 |
+
best_weight = f"{int_part}.{dec_part}"
|
333 |
+
else:
|
334 |
+
best_weight = best_weight.lstrip('0') or "0"
|
335 |
+
|
336 |
+
try:
|
337 |
+
final_float_weight = float(best_weight)
|
338 |
+
if final_float_weight < 0.01 or final_float_weight > 1000:
|
339 |
+
logging.warning(f"Detected weight {final_float_weight} is outside typical range, reducing confidence.")
|
340 |
+
best_conf *= 0.5
|
341 |
+
except ValueError:
|
342 |
+
pass
|
343 |
+
|
344 |
+
logging.info(f"Final detected weight: {best_weight}, Confidence: {round(best_conf * 100, 2)}%")
|
345 |
+
return best_weight, round(best_conf * 100, 2)
|
346 |
+
|
347 |
except Exception as e:
|
348 |
logging.error(f"Weight extraction failed unexpectedly: {str(e)}")
|
349 |
return "Not detected", 0.0
|