Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -6,30 +6,32 @@ from datetime import datetime
|
|
6 |
import re
|
7 |
from PIL import Image
|
8 |
|
9 |
-
|
|
|
10 |
|
11 |
def detect_weight(image):
|
12 |
if image is None:
|
13 |
return "No image uploaded", "N/A", None
|
14 |
|
15 |
-
# Convert to OpenCV format
|
|
|
16 |
image_np = np.array(image)
|
17 |
|
18 |
-
#
|
19 |
gray = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY)
|
20 |
-
|
21 |
-
|
22 |
|
23 |
# Run OCR
|
24 |
-
result = ocr.ocr(
|
25 |
|
26 |
best_match = None
|
27 |
best_conf = 0
|
28 |
|
|
|
29 |
for line in result:
|
30 |
for box in line:
|
31 |
-
text = box[1]
|
32 |
-
conf = box[1][1]
|
33 |
match = re.search(r"\d+\.\d+", text)
|
34 |
if match and conf > best_conf:
|
35 |
best_match = match.group()
|
@@ -37,10 +39,11 @@ def detect_weight(image):
|
|
37 |
|
38 |
if best_match:
|
39 |
now = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
40 |
-
return f"Weight: {best_match} kg (Confidence: {round(best_conf*100, 2)}%)", now, image
|
41 |
else:
|
42 |
return "No weight detected kg (Confidence: 0.0%)", "N/A", image
|
43 |
|
|
|
44 |
gr.Interface(
|
45 |
fn=detect_weight,
|
46 |
inputs=gr.Image(type="pil", label="Upload or Capture Weight Image"),
|
@@ -50,5 +53,5 @@ gr.Interface(
|
|
50 |
gr.Image(label="Snapshot")
|
51 |
],
|
52 |
title="Auto Weight Logger",
|
53 |
-
description="Upload or capture a
|
54 |
).launch()
|
|
|
6 |
import re
|
7 |
from PIL import Image
|
8 |
|
9 |
+
# Initialize PaddleOCR (only once)
|
10 |
+
ocr = PaddleOCR(use_angle_cls=True, lang='en') # Use English OCR model
|
11 |
|
12 |
def detect_weight(image):
|
13 |
if image is None:
|
14 |
return "No image uploaded", "N/A", None
|
15 |
|
16 |
+
# Convert PIL Image to OpenCV format (NumPy array)
|
17 |
+
image = image.convert("RGB")
|
18 |
image_np = np.array(image)
|
19 |
|
20 |
+
# Preprocess: Grayscale + contrast enhancement (optional)
|
21 |
gray = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY)
|
22 |
+
gray_eq = cv2.equalizeHist(gray)
|
23 |
+
processed_image = cv2.cvtColor(gray_eq, cv2.COLOR_GRAY2RGB) # convert back to RGB for PaddleOCR
|
24 |
|
25 |
# Run OCR
|
26 |
+
result = ocr.ocr(processed_image, cls=True)
|
27 |
|
28 |
best_match = None
|
29 |
best_conf = 0
|
30 |
|
31 |
+
# Search for a decimal number like 25.52
|
32 |
for line in result:
|
33 |
for box in line:
|
34 |
+
text, conf = box[1]
|
|
|
35 |
match = re.search(r"\d+\.\d+", text)
|
36 |
if match and conf > best_conf:
|
37 |
best_match = match.group()
|
|
|
39 |
|
40 |
if best_match:
|
41 |
now = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
42 |
+
return f"Weight: {best_match} kg (Confidence: {round(best_conf * 100, 2)}%)", now, image
|
43 |
else:
|
44 |
return "No weight detected kg (Confidence: 0.0%)", "N/A", image
|
45 |
|
46 |
+
# Gradio UI
|
47 |
gr.Interface(
|
48 |
fn=detect_weight,
|
49 |
inputs=gr.Image(type="pil", label="Upload or Capture Weight Image"),
|
|
|
53 |
gr.Image(label="Snapshot")
|
54 |
],
|
55 |
title="Auto Weight Logger",
|
56 |
+
description="Upload or capture a digital scale image. This app detects the weight automatically using AI."
|
57 |
).launch()
|