Spaces:
Running
Running
Update ocr_engine.py
Browse files- ocr_engine.py +76 -4
ocr_engine.py
CHANGED
@@ -93,7 +93,7 @@ def detect_roi(img):
|
|
93 |
logging.info("No suitable ROI found, attempting fallback criteria.")
|
94 |
# Fallback with relaxed criteria
|
95 |
valid_contours = [c for c in contours if 500 < cv2.contourArea(c) < (img_area * 0.95) and
|
96 |
-
|
97 |
if valid_contours:
|
98 |
contour = max(valid_contours, key=cv2.contourArea)
|
99 |
x, y, w, h = cv2.boundingRect(contour)
|
@@ -254,11 +254,11 @@ def extract_weight_from_image(pil_img):
|
|
254 |
|
255 |
brightness = estimate_brightness(img)
|
256 |
conf_threshold = 0.7 if brightness > 150 else (0.6 if brightness > 80 else 0.4)
|
257 |
-
|
|
|
258 |
roi_area = roi_bbox[2] * roi_bbox[3]
|
259 |
conf_threshold *= 1.2 if roi_area > (img.shape[0] * img.shape[1] * 0.5) else 1.0
|
260 |
|
261 |
-
roi_img, roi_bbox = detect_roi(img)
|
262 |
custom_result = custom_seven_segment_ocr(roi_img, roi_bbox)
|
263 |
if custom_result:
|
264 |
try:
|
@@ -285,4 +285,76 @@ def extract_weight_from_image(pil_img):
|
|
285 |
results = easyocr_reader.readtext(final_roi, detail=1, paragraph=False,
|
286 |
contrast_ths=0.4, adjust_contrast=1.2,
|
287 |
text_threshold=0.5, mag_ratio=4.0,
|
288 |
-
allowlist='0123456789. kglb', batch_size=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
logging.info("No suitable ROI found, attempting fallback criteria.")
|
94 |
# Fallback with relaxed criteria
|
95 |
valid_contours = [c for c in contours if 500 < cv2.contourArea(c) < (img_area * 0.95) and
|
96 |
+
0.8 <= cv2.boundingRect(c)[2]/cv2.boundingRect(c)[3] <= 12.0]
|
97 |
if valid_contours:
|
98 |
contour = max(valid_contours, key=cv2.contourArea)
|
99 |
x, y, w, h = cv2.boundingRect(contour)
|
|
|
254 |
|
255 |
brightness = estimate_brightness(img)
|
256 |
conf_threshold = 0.7 if brightness > 150 else (0.6 if brightness > 80 else 0.4)
|
257 |
+
roi_img, roi_bbox = detect_roi(img)
|
258 |
+
if roi_bbox:
|
259 |
roi_area = roi_bbox[2] * roi_bbox[3]
|
260 |
conf_threshold *= 1.2 if roi_area > (img.shape[0] * img.shape[1] * 0.5) else 1.0
|
261 |
|
|
|
262 |
custom_result = custom_seven_segment_ocr(roi_img, roi_bbox)
|
263 |
if custom_result:
|
264 |
try:
|
|
|
285 |
results = easyocr_reader.readtext(final_roi, detail=1, paragraph=False,
|
286 |
contrast_ths=0.4, adjust_contrast=1.2,
|
287 |
text_threshold=0.5, mag_ratio=4.0,
|
288 |
+
allowlist='0123456789. kglb', batch_size=batch_size, y_ths=0.2)
|
289 |
+
|
290 |
+
best_weight = None
|
291 |
+
best_conf = 0.0
|
292 |
+
best_score = 0.0
|
293 |
+
unit = None
|
294 |
+
for (bbox, text, conf) in results:
|
295 |
+
if 'kg' in text.lower():
|
296 |
+
unit = 'kg'
|
297 |
+
continue
|
298 |
+
elif 'g' in text.lower():
|
299 |
+
unit = 'g'
|
300 |
+
continue
|
301 |
+
elif 'lb' in text.lower():
|
302 |
+
unit = 'lb'
|
303 |
+
continue
|
304 |
+
text = re.sub(r"[^\d\.]", "", text)
|
305 |
+
if text.count('.') > 1:
|
306 |
+
text = text.replace('.', '', text.count('.') - 1)
|
307 |
+
text = text.strip('.')
|
308 |
+
if re.fullmatch(r"^\d*\.?\d*$", text):
|
309 |
+
try:
|
310 |
+
weight = float(text)
|
311 |
+
if unit == 'g':
|
312 |
+
weight /= 1000 # Convert grams to kilograms
|
313 |
+
elif unit == 'lb':
|
314 |
+
weight *= 0.453592 # Convert pounds to kilograms
|
315 |
+
range_score = 1.5 if 0.01 <= weight <= 500 else 0.8
|
316 |
+
digit_count = len(text.replace('.', ''))
|
317 |
+
digit_score = 1.3 if 2 <= digit_count <= 6 else 0.9
|
318 |
+
score = conf * range_score * digit_score
|
319 |
+
if roi_bbox:
|
320 |
+
(x_roi, y_roi, w_roi, h_roi) = roi_bbox
|
321 |
+
roi_area = w_roi * h_roi
|
322 |
+
x_min, y_min = int(min(b[0] for b in bbox)), int(min(b[1] for b in bbox))
|
323 |
+
x_max, y_max = int(max(b[0] for b in bbox)), int(max(b[1] for b in bbox))
|
324 |
+
bbox_area = (x_max - x_min) * (y_max - y_min)
|
325 |
+
if roi_area > 0 and bbox_area / roi_area < 0.05:
|
326 |
+
score *= 0.6
|
327 |
+
if score > best_score and conf > conf_threshold:
|
328 |
+
best_weight = text
|
329 |
+
best_conf = conf
|
330 |
+
best_score = score
|
331 |
+
logging.info(f"Candidate EasyOCR weight: '{text}', Unit: {unit or 'none'}, Conf: {conf}, Score: {score}")
|
332 |
+
except ValueError:
|
333 |
+
logging.warning(f"Could not convert '{text}' to float during EasyOCR fallback.")
|
334 |
+
|
335 |
+
if not best_weight:
|
336 |
+
logging.info("No valid weight detected after all attempts.")
|
337 |
+
return "Not detected", 0.0
|
338 |
+
|
339 |
+
# Format the weight
|
340 |
+
if "." in best_weight:
|
341 |
+
int_part, dec_part = best_weight.split(".")
|
342 |
+
int_part = int_part.lstrip("0") or "0"
|
343 |
+
dec_part = dec_part.rstrip('0')
|
344 |
+
best_weight = f"{int_part}.{dec_part}" if dec_part else int_part
|
345 |
+
else:
|
346 |
+
best_weight = best_weight.lstrip('0') or "0"
|
347 |
+
|
348 |
+
try:
|
349 |
+
final_weight = float(best_weight)
|
350 |
+
if final_weight < 0.01 or final_weight > 500:
|
351 |
+
best_conf *= 0.7
|
352 |
+
except ValueError:
|
353 |
+
pass
|
354 |
+
|
355 |
+
logging.info(f"Final detected weight: {best_weight}, Unit: {unit or 'none'}, Confidence: {round(best_conf * 100, 2)}%")
|
356 |
+
return best_weight, round(best_conf * 100, 2)
|
357 |
+
|
358 |
+
except Exception as e:
|
359 |
+
logging.error(f"Weight extraction failed unexpectedly: {str(e)}")
|
360 |
+
return "Not detected", 0.0
|