Spaces:
Running
Running
Update ocr_engine.py
Browse files- ocr_engine.py +285 -115
ocr_engine.py
CHANGED
@@ -3,72 +3,145 @@ import numpy as np
|
|
3 |
import cv2
|
4 |
import re
|
5 |
import logging
|
|
|
|
|
|
|
6 |
|
7 |
-
# Set up logging for debugging
|
8 |
-
logging.basicConfig(level=logging.
|
9 |
|
10 |
-
# Initialize EasyOCR
|
11 |
easyocr_reader = easyocr.Reader(['en'], gpu=False)
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
def estimate_brightness(img):
|
14 |
"""Estimate image brightness to detect illuminated displays"""
|
15 |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
def detect_roi(img):
|
19 |
"""Detect and crop the region of interest (likely the digital display)"""
|
20 |
try:
|
21 |
-
|
|
|
|
|
|
|
|
|
22 |
brightness = estimate_brightness(img)
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
contours, _ = cv2.findContours(dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
|
|
28 |
if contours:
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
if valid_contours:
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
38 |
return img, None
|
39 |
except Exception as e:
|
40 |
logging.error(f"ROI detection failed: {str(e)}")
|
|
|
41 |
return img, None
|
42 |
|
43 |
def detect_segments(digit_img):
|
44 |
"""Detect seven-segment patterns in a digit image"""
|
45 |
h, w = digit_img.shape
|
46 |
-
if h <
|
|
|
47 |
return None
|
48 |
|
49 |
-
# Define segment regions (top, middle, bottom, left-top, left-bottom, right-top, right-bottom)
|
50 |
segments = {
|
51 |
-
'top': (0, w, 0, h
|
52 |
-
'middle': (0, w,
|
53 |
-
'bottom': (0, w,
|
54 |
-
'left_top': (0, w
|
55 |
-
'left_bottom': (0, w
|
56 |
-
'right_top': (
|
57 |
-
'right_bottom': (
|
58 |
}
|
59 |
|
60 |
segment_presence = {}
|
61 |
for name, (x1, x2, y1, y2) in segments.items():
|
|
|
|
|
62 |
region = digit_img[y1:y2, x1:x2]
|
63 |
if region.size == 0:
|
64 |
-
|
65 |
-
|
66 |
pixel_count = np.sum(region == 255)
|
67 |
total_pixels = region.size
|
68 |
-
|
69 |
-
|
70 |
|
71 |
-
# Seven-segment digit patterns
|
72 |
digit_patterns = {
|
73 |
'0': ('top', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'),
|
74 |
'1': ('right_top', 'right_bottom'),
|
@@ -83,140 +156,237 @@ def detect_segments(digit_img):
|
|
83 |
}
|
84 |
|
85 |
best_match = None
|
86 |
-
|
87 |
for digit, pattern in digit_patterns.items():
|
88 |
matches = sum(1 for segment in pattern if segment_presence.get(segment, False))
|
89 |
-
|
90 |
-
|
91 |
-
if
|
92 |
-
|
|
|
|
|
93 |
best_match = digit
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
return best_match
|
96 |
|
97 |
def custom_seven_segment_ocr(img, roi_bbox):
|
98 |
"""Perform custom OCR for seven-segment displays"""
|
99 |
try:
|
100 |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
-
# Use EasyOCR to get bounding boxes for digits
|
104 |
results = easyocr_reader.readtext(thresh, detail=1, paragraph=False,
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
|
|
109 |
if not results:
|
|
|
110 |
return None
|
111 |
|
112 |
-
|
113 |
-
|
114 |
-
for (bbox, _, _) in results:
|
115 |
(x1, y1), (x2, y2), (x3, y3), (x4, y4) = bbox
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
|
122 |
-
|
123 |
recognized_text = ""
|
124 |
-
for x_min, x_max, y_min, y_max in
|
125 |
-
x_min, y_min = max(0,
|
126 |
-
x_max, y_max = min(thresh.shape[1],
|
127 |
if x_max <= x_min or y_max <= y_min:
|
128 |
continue
|
129 |
-
|
130 |
-
|
131 |
-
if
|
132 |
-
recognized_text +=
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
return None
|
140 |
except Exception as e:
|
141 |
logging.error(f"Custom seven-segment OCR failed: {str(e)}")
|
142 |
return None
|
143 |
|
144 |
def extract_weight_from_image(pil_img):
|
|
|
145 |
try:
|
146 |
img = np.array(pil_img)
|
147 |
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
|
|
148 |
|
149 |
brightness = estimate_brightness(img)
|
150 |
-
conf_threshold = 0.
|
151 |
|
152 |
-
# Detect ROI
|
153 |
roi_img, roi_bbox = detect_roi(img)
|
154 |
-
|
155 |
-
# Try custom seven-segment OCR first
|
156 |
custom_result = custom_seven_segment_ocr(roi_img, roi_bbox)
|
157 |
if custom_result:
|
158 |
-
#
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
|
172 |
best_weight = None
|
173 |
best_conf = 0.0
|
174 |
best_score = 0.0
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
|
207 |
if not best_weight:
|
208 |
-
logging.info("No valid weight detected")
|
209 |
return "Not detected", 0.0
|
210 |
|
211 |
if "." in best_weight:
|
212 |
int_part, dec_part = best_weight.split(".")
|
213 |
int_part = int_part.lstrip("0") or "0"
|
214 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
else:
|
216 |
best_weight = best_weight.lstrip('0') or "0"
|
217 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
218 |
return best_weight, round(best_conf * 100, 2)
|
219 |
|
220 |
except Exception as e:
|
221 |
-
logging.error(f"Weight extraction failed: {str(e)}")
|
222 |
return "Not detected", 0.0
|
|
|
3 |
import cv2
|
4 |
import re
|
5 |
import logging
|
6 |
+
from datetime import datetime
|
7 |
+
import os
|
8 |
+
from PIL import Image, ImageEnhance
|
9 |
|
10 |
+
# Set up logging for detailed debugging
|
11 |
+
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
|
12 |
|
13 |
+
# Initialize EasyOCR with English and GPU disabled (enable if you have a compatible GPU)
|
14 |
easyocr_reader = easyocr.Reader(['en'], gpu=False)
|
15 |
|
16 |
+
# Directory for debug images
|
17 |
+
DEBUG_DIR = "debug_images"
|
18 |
+
os.makedirs(DEBUG_DIR, exist_ok=True)
|
19 |
+
|
20 |
+
def save_debug_image(img, filename_suffix, prefix=""):
|
21 |
+
"""Saves an image to the debug directory with a timestamp."""
|
22 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
|
23 |
+
filename = os.path.join(DEBUG_DIR, f"{prefix}{timestamp}_{filename_suffix}.png")
|
24 |
+
if len(img.shape) == 3: # Color image
|
25 |
+
cv2.imwrite(filename, img)
|
26 |
+
else: # Grayscale image
|
27 |
+
cv2.imwrite(filename, img)
|
28 |
+
logging.debug(f"Saved debug image: {filename}")
|
29 |
+
|
30 |
def estimate_brightness(img):
|
31 |
"""Estimate image brightness to detect illuminated displays"""
|
32 |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
33 |
+
brightness = np.mean(gray)
|
34 |
+
logging.debug(f"Estimated brightness: {brightness}")
|
35 |
+
return brightness
|
36 |
+
|
37 |
+
def preprocess_image(img):
|
38 |
+
"""Enhance contrast, brightness, and reduce noise for better digit detection"""
|
39 |
+
# Convert to PIL for initial enhancement
|
40 |
+
pil_img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
41 |
+
pil_img = ImageEnhance.Contrast(pil_img).enhance(2.0) # Stronger contrast
|
42 |
+
pil_img = ImageEnhance.Brightness(pil_img).enhance(1.3) # Moderate brightness boost
|
43 |
+
img = cv2.cvtColor(np.array(pil_img), cv2.COLOR_RGB2BGR)
|
44 |
+
save_debug_image(img, "00_preprocessed_pil")
|
45 |
+
|
46 |
+
# Apply CLAHE to enhance local contrast
|
47 |
+
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
48 |
+
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
|
49 |
+
enhanced = clahe.apply(gray)
|
50 |
+
save_debug_image(enhanced, "00_clahe_enhanced")
|
51 |
+
|
52 |
+
# Apply bilateral filter to reduce noise while preserving edges
|
53 |
+
filtered = cv2.bilateralFilter(enhanced, d=11, sigmaColor=100, sigmaSpace=100)
|
54 |
+
save_debug_image(filtered, "00_bilateral_filtered")
|
55 |
+
return filtered
|
56 |
|
57 |
def detect_roi(img):
|
58 |
"""Detect and crop the region of interest (likely the digital display)"""
|
59 |
try:
|
60 |
+
save_debug_image(img, "01_original")
|
61 |
+
gray = preprocess_image(img)
|
62 |
+
save_debug_image(gray, "02_preprocessed_grayscale")
|
63 |
+
|
64 |
+
# Try multiple thresholding methods
|
65 |
brightness = estimate_brightness(img)
|
66 |
+
if brightness > 150:
|
67 |
+
thresh = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
68 |
+
cv2.THRESH_BINARY, 31, 5)
|
69 |
+
save_debug_image(thresh, "03_roi_adaptive_threshold_high")
|
70 |
+
else:
|
71 |
+
_, thresh = cv2.threshold(gray, 40, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
72 |
+
save_debug_image(thresh, "03_roi_otsu_threshold_low")
|
73 |
+
|
74 |
+
# Morphological operations to clean up noise and connect digits
|
75 |
+
kernel = np.ones((5, 5), np.uint8)
|
76 |
+
thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=2)
|
77 |
+
save_debug_image(thresh, "03_roi_morph_cleaned")
|
78 |
+
|
79 |
+
kernel = np.ones((11, 11), np.uint8)
|
80 |
+
dilated = cv2.dilate(thresh, kernel, iterations=5)
|
81 |
+
save_debug_image(dilated, "04_roi_dilated")
|
82 |
+
|
83 |
contours, _ = cv2.findContours(dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
84 |
+
|
85 |
if contours:
|
86 |
+
img_area = img.shape[0] * img.shape[1]
|
87 |
+
valid_contours = []
|
88 |
+
for c in contours:
|
89 |
+
area = cv2.contourArea(c)
|
90 |
+
if 200 < area < (img_area * 0.99): # Very relaxed area filter
|
91 |
+
x, y, w, h = cv2.boundingRect(c)
|
92 |
+
aspect_ratio = w / h if h > 0 else 0
|
93 |
+
if 0.5 <= aspect_ratio <= 10.0 and w > 30 and h > 20: # Very relaxed filters
|
94 |
+
valid_contours.append(c)
|
95 |
+
|
96 |
if valid_contours:
|
97 |
+
contour = max(valid_contours, key=cv2.contourArea) # Largest contour
|
98 |
+
x, y, w, h = cv2.boundingRect(contour)
|
99 |
+
padding = 100 # Generous padding
|
100 |
+
x, y = max(0, x - padding), max(0, y - padding)
|
101 |
+
w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y)
|
102 |
+
roi_img = img[y:y+h, x:x+w]
|
103 |
+
save_debug_image(roi_img, "05_detected_roi")
|
104 |
+
logging.info(f"Detected ROI with dimensions: ({x}, {y}, {w}, {h})")
|
105 |
+
return roi_img, (x, y, w, h)
|
106 |
+
|
107 |
+
logging.info("No suitable ROI found, returning preprocessed image.")
|
108 |
+
save_debug_image(img, "05_no_roi_original_fallback")
|
109 |
return img, None
|
110 |
except Exception as e:
|
111 |
logging.error(f"ROI detection failed: {str(e)}")
|
112 |
+
save_debug_image(img, "05_roi_detection_error_fallback")
|
113 |
return img, None
|
114 |
|
115 |
def detect_segments(digit_img):
|
116 |
"""Detect seven-segment patterns in a digit image"""
|
117 |
h, w = digit_img.shape
|
118 |
+
if h < 8 or w < 4: # Very relaxed size constraints
|
119 |
+
logging.debug(f"Digit image too small: {w}x{h}")
|
120 |
return None
|
121 |
|
|
|
122 |
segments = {
|
123 |
+
'top': (int(w*0.1), int(w*0.9), 0, int(h*0.25)),
|
124 |
+
'middle': (int(w*0.1), int(w*0.9), int(h*0.35), int(h*0.65)),
|
125 |
+
'bottom': (int(w*0.1), int(w*0.9), int(h*0.75), h),
|
126 |
+
'left_top': (0, int(w*0.3), int(h*0.05), int(h*0.55)),
|
127 |
+
'left_bottom': (0, int(w*0.3), int(h*0.45), int(h*0.95)),
|
128 |
+
'right_top': (int(w*0.7), w, int(h*0.05), int(h*0.55)),
|
129 |
+
'right_bottom': (int(w*0.7), w, int(h*0.45), int(h*0.95))
|
130 |
}
|
131 |
|
132 |
segment_presence = {}
|
133 |
for name, (x1, x2, y1, y2) in segments.items():
|
134 |
+
x1, y1 = max(0, x1), max(0, y1)
|
135 |
+
x2, y2 = min(w, x2), min(h, y2)
|
136 |
region = digit_img[y1:y2, x1:x2]
|
137 |
if region.size == 0:
|
138 |
+
segment_presence[name] = False
|
139 |
+
continue
|
140 |
pixel_count = np.sum(region == 255)
|
141 |
total_pixels = region.size
|
142 |
+
segment_presence[name] = pixel_count / total_pixels > 0.3 # Very low threshold
|
143 |
+
logging.debug(f"Segment {name}: {pixel_count}/{total_pixels} = {pixel_count/total_pixels:.2f}")
|
144 |
|
|
|
145 |
digit_patterns = {
|
146 |
'0': ('top', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'),
|
147 |
'1': ('right_top', 'right_bottom'),
|
|
|
156 |
}
|
157 |
|
158 |
best_match = None
|
159 |
+
max_score = -1
|
160 |
for digit, pattern in digit_patterns.items():
|
161 |
matches = sum(1 for segment in pattern if segment_presence.get(segment, False))
|
162 |
+
non_matches_penalty = sum(1 for segment in segment_presence if segment not in pattern and segment_presence[segment])
|
163 |
+
current_score = matches - non_matches_penalty
|
164 |
+
if all(segment_presence.get(s, False) for s in pattern):
|
165 |
+
current_score += 0.5
|
166 |
+
if current_score > max_score:
|
167 |
+
max_score = current_score
|
168 |
best_match = digit
|
169 |
+
elif current_score == max_score and best_match is not None:
|
170 |
+
current_digit_non_matches = sum(1 for segment in segment_presence if segment not in pattern and segment_presence[segment])
|
171 |
+
best_digit_pattern = digit_patterns[best_match]
|
172 |
+
best_digit_non_matches = sum(1 for segment in segment_presence if segment not in best_digit_pattern and segment_presence[segment])
|
173 |
+
if current_digit_non_matches < best_digit_non_matches:
|
174 |
+
best_match = digit
|
175 |
+
|
176 |
+
logging.debug(f"Segment presence: {segment_presence}, Detected digit: {best_match}")
|
177 |
return best_match
|
178 |
|
179 |
def custom_seven_segment_ocr(img, roi_bbox):
|
180 |
"""Perform custom OCR for seven-segment displays"""
|
181 |
try:
|
182 |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
183 |
+
brightness = estimate_brightness(img)
|
184 |
+
# Try multiple thresholding approaches
|
185 |
+
if brightness > 150:
|
186 |
+
_, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
187 |
+
save_debug_image(thresh, "06_roi_otsu_threshold")
|
188 |
+
else:
|
189 |
+
_, thresh = cv2.threshold(gray, 30, 255, cv2.THRESH_BINARY)
|
190 |
+
save_debug_image(thresh, "06_roi_simple_threshold")
|
191 |
+
|
192 |
+
# Morphological cleaning
|
193 |
+
kernel = np.ones((3, 3), np.uint8)
|
194 |
+
thresh = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=1)
|
195 |
+
save_debug_image(thresh, "06_roi_morph_cleaned")
|
196 |
|
|
|
197 |
results = easyocr_reader.readtext(thresh, detail=1, paragraph=False,
|
198 |
+
contrast_ths=0.1, adjust_contrast=1.0,
|
199 |
+
text_threshold=0.3, mag_ratio=4.0,
|
200 |
+
allowlist='0123456789.-', y_ths=0.6)
|
201 |
+
|
202 |
+
logging.info(f"Custom OCR EasyOCR results: {results}")
|
203 |
if not results:
|
204 |
+
logging.info("Custom OCR EasyOCR found no digits.")
|
205 |
return None
|
206 |
|
207 |
+
digits_info = []
|
208 |
+
for (bbox, text, conf) in results:
|
|
|
209 |
(x1, y1), (x2, y2), (x3, y3), (x4, y4) = bbox
|
210 |
+
h_bbox = max(y1, y2, y3, y4) - min(y1, y2, y3, y4)
|
211 |
+
if len(text) == 1 and (text.isdigit() or text in '.-') and h_bbox > 4:
|
212 |
+
x_min, x_max = int(min(x1, x4)), int(max(x2, x3))
|
213 |
+
y_min, y_max = int(min(y1, y2)), int(max(y3, y4))
|
214 |
+
digits_info.append((x_min, x_max, y_min, y_max, text, conf))
|
215 |
|
216 |
+
digits_info.sort(key=lambda x: x[0])
|
217 |
recognized_text = ""
|
218 |
+
for idx, (x_min, x_max, y_min, y_max, easyocr_char, easyocr_conf) in enumerate(digits_info):
|
219 |
+
x_min, y_min = max(0, x_min), max(0, y_min)
|
220 |
+
x_max, y_max = min(thresh.shape[1], x_max), min(thresh.shape[0], y_max)
|
221 |
if x_max <= x_min or y_max <= y_min:
|
222 |
continue
|
223 |
+
digit_img_crop = thresh[y_min:y_max, x_min:x_max]
|
224 |
+
save_debug_image(digit_img_crop, f"07_digit_crop_{idx}_{easyocr_char}")
|
225 |
+
if easyocr_conf > 0.8 or easyocr_char in '.-' or digit_img_crop.shape[0] < 8 or digit_img_crop.shape[1] < 4:
|
226 |
+
recognized_text += easyocr_char
|
227 |
+
else:
|
228 |
+
digit_from_segments = detect_segments(digit_img_crop)
|
229 |
+
if digit_from_segments:
|
230 |
+
recognized_text += digit_from_segments
|
231 |
+
else:
|
232 |
+
recognized_text += easyocr_char
|
233 |
+
|
234 |
+
logging.info(f"Custom OCR before validation, recognized_text: {recognized_text}")
|
235 |
+
# Relaxed validation for debugging
|
236 |
+
if recognized_text:
|
237 |
+
return recognized_text
|
238 |
+
logging.info(f"Custom OCR text '{recognized_text}' failed validation.")
|
239 |
return None
|
240 |
except Exception as e:
|
241 |
logging.error(f"Custom seven-segment OCR failed: {str(e)}")
|
242 |
return None
|
243 |
|
244 |
def extract_weight_from_image(pil_img):
|
245 |
+
"""Extract weight from a PIL image of a digital scale display"""
|
246 |
try:
|
247 |
img = np.array(pil_img)
|
248 |
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
249 |
+
save_debug_image(img, "00_input_image")
|
250 |
|
251 |
brightness = estimate_brightness(img)
|
252 |
+
conf_threshold = 0.3 if brightness > 150 else (0.2 if brightness > 80 else 0.1)
|
253 |
|
|
|
254 |
roi_img, roi_bbox = detect_roi(img)
|
|
|
|
|
255 |
custom_result = custom_seven_segment_ocr(roi_img, roi_bbox)
|
256 |
if custom_result:
|
257 |
+
# Basic cleaning
|
258 |
+
text = re.sub(r"[^\d\.\-]", "", custom_result) # Allow negative signs
|
259 |
+
if text.count('.') > 1:
|
260 |
+
text = text.replace('.', '', text.count('.') - 1)
|
261 |
+
if text:
|
262 |
+
if text.startswith('.'):
|
263 |
+
text = "0" + text
|
264 |
+
if text.endswith('.'):
|
265 |
+
text = text.rstrip('.')
|
266 |
+
if text == '.' or text == '':
|
267 |
+
logging.warning(f"Custom OCR result '{text}' is invalid after cleaning.")
|
268 |
+
else:
|
269 |
+
try:
|
270 |
+
float(text)
|
271 |
+
logging.info(f"Custom OCR result: {text}, Confidence: 100.0%")
|
272 |
+
return text, 100.0
|
273 |
+
except ValueError:
|
274 |
+
logging.warning(f"Custom OCR result '{text}' is not a valid number, falling back.")
|
275 |
+
logging.warning(f"Custom OCR result '{custom_result}' failed validation, falling back.")
|
276 |
|
277 |
+
logging.info("Custom OCR failed or invalid, falling back to general EasyOCR.")
|
278 |
+
processed_roi_img = preprocess_image(roi_img)
|
279 |
+
|
280 |
+
# Try multiple thresholding approaches
|
281 |
+
if brightness > 150:
|
282 |
+
thresh = cv2.adaptiveThreshold(processed_roi_img, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
283 |
+
cv2.THRESH_BINARY, 41, 7)
|
284 |
+
save_debug_image(thresh, "09_fallback_adaptive_thresh")
|
285 |
+
else:
|
286 |
+
_, thresh = cv2.threshold(processed_roi_img, 30, 255, cv2.THRESH_BINARY)
|
287 |
+
save_debug_image(thresh, "09_fallback_simple_thresh")
|
288 |
+
|
289 |
+
# Morphological cleaning
|
290 |
+
kernel = np.ones((3, 3), np.uint8)
|
291 |
+
thresh = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=1)
|
292 |
+
save_debug_image(thresh, "09_fallback_morph_cleaned")
|
293 |
+
|
294 |
+
results = easyocr_reader.readtext(thresh, detail=1, paragraph=False,
|
295 |
+
contrast_ths=0.1, adjust_contrast=1.0,
|
296 |
+
text_threshold=0.2, mag_ratio=5.0,
|
297 |
+
allowlist='0123456789.-', batch_size=4, y_ths=0.6)
|
298 |
|
299 |
best_weight = None
|
300 |
best_conf = 0.0
|
301 |
best_score = 0.0
|
302 |
+
for (bbox, text, conf) in results:
|
303 |
+
logging.info(f"Fallback EasyOCR raw text: {text}, Confidence: {conf}")
|
304 |
+
text = text.lower().strip()
|
305 |
+
text = text.replace(",", ".").replace(";", ".").replace(":", ".").replace(" ", "")
|
306 |
+
text = text.replace("o", "0").replace("O", "0").replace("q", "0").replace("Q", "0")
|
307 |
+
text = text.replace("s", "5").replace("S", "5")
|
308 |
+
text = text.replace("g", "9").replace("G", "6")
|
309 |
+
text = text.replace("l", "1").replace("I", "1").replace("|", "1")
|
310 |
+
text = text.replace("b", "8").replace("B", "8")
|
311 |
+
text = text.replace("z", "2").replace("Z", "2")
|
312 |
+
text = text.replace("a", "4").replace("A", "4")
|
313 |
+
text = text.replace("e", "3")
|
314 |
+
text = text.replace("t", "7")
|
315 |
+
text = text.replace("~", "").replace("`", "")
|
316 |
+
text = re.sub(r"(kgs|kg|k|lb|g|gr|pounds|lbs)\b", "", text)
|
317 |
+
text = re.sub(r"[^\d\.\-]", "", text)
|
318 |
+
if text.count('.') > 1:
|
319 |
+
parts = text.split('.')
|
320 |
+
text = parts[0] + '.' + ''.join(parts[1:])
|
321 |
+
text = text.strip('.')
|
322 |
+
if len(text.replace('.', '').replace('-', '')) > 0: # Allow negative weights
|
323 |
+
try:
|
324 |
+
weight = float(text)
|
325 |
+
range_score = 1.0
|
326 |
+
if 0.0 <= weight <= 250:
|
327 |
+
range_score = 1.5
|
328 |
+
elif weight > 250 and weight <= 500:
|
329 |
+
range_score = 1.2
|
330 |
+
elif weight > 500 and weight <= 1000:
|
331 |
+
range_score = 1.0
|
332 |
+
else:
|
333 |
+
range_score = 0.5
|
334 |
+
digit_count = len(text.replace('.', '').replace('-', ''))
|
335 |
+
digit_score = 1.0
|
336 |
+
if digit_count >= 2 and digit_count <= 5:
|
337 |
+
digit_score = 1.3
|
338 |
+
elif digit_count == 1:
|
339 |
+
digit_score = 0.8
|
340 |
+
score = conf * range_score * digit_score
|
341 |
+
if roi_bbox:
|
342 |
+
(x_roi, y_roi, w_roi, h_roi) = roi_bbox
|
343 |
+
roi_area = w_roi * h_roi
|
344 |
+
x_min, y_min = int(min(b[0] for b in bbox)), int(min(b[1] for b in bbox))
|
345 |
+
x_max, y_max = int(max(b[0] for b in bbox)), int(max(b[1] for b in bbox))
|
346 |
+
bbox_area = (x_max - x_min) * (y_max - y_min)
|
347 |
+
if roi_area > 0 and bbox_area / roi_area < 0.02:
|
348 |
+
score *= 0.5
|
349 |
+
bbox_aspect_ratio = (x_max - x_min) / (y_max - y_min) if (y_max - y_min) > 0 else 0
|
350 |
+
if bbox_aspect_ratio < 0.1:
|
351 |
+
score *= 0.7
|
352 |
+
if score > best_score and conf > conf_threshold:
|
353 |
+
best_weight = text
|
354 |
+
best_conf = conf
|
355 |
+
best_score = score
|
356 |
+
logging.info(f"Candidate EasyOCR weight: '{text}', Conf: {conf}, Score: {score}")
|
357 |
+
except ValueError:
|
358 |
+
logging.warning(f"Could not convert '{text}' to float during EasyOCR fallback.")
|
359 |
+
continue
|
360 |
|
361 |
if not best_weight:
|
362 |
+
logging.info("No valid weight detected after all attempts.")
|
363 |
return "Not detected", 0.0
|
364 |
|
365 |
if "." in best_weight:
|
366 |
int_part, dec_part = best_weight.split(".")
|
367 |
int_part = int_part.lstrip("0") or "0"
|
368 |
+
dec_part = dec_part.rstrip('0')
|
369 |
+
if not dec_part and int_part != "0":
|
370 |
+
best_weight = int_part
|
371 |
+
elif not dec_part and int_part == "0":
|
372 |
+
best_weight = "0"
|
373 |
+
else:
|
374 |
+
best_weight = f"{int_part}.{dec_part}"
|
375 |
else:
|
376 |
best_weight = best_weight.lstrip('0') or "0"
|
377 |
|
378 |
+
try:
|
379 |
+
final_float_weight = float(best_weight)
|
380 |
+
if final_float_weight < 0.0 or final_float_weight > 1000:
|
381 |
+
logging.warning(f"Detected weight {final_float_weight} is outside typical range, reducing confidence.")
|
382 |
+
best_conf *= 0.5
|
383 |
+
except ValueError:
|
384 |
+
logging.warning(f"Final weight '{best_weight}' is not a valid number.")
|
385 |
+
best_conf *= 0.5
|
386 |
+
|
387 |
+
logging.info(f"Final detected weight: {best_weight}, Confidence: {round(best_conf * 100, 2)}%")
|
388 |
return best_weight, round(best_conf * 100, 2)
|
389 |
|
390 |
except Exception as e:
|
391 |
+
logging.error(f"Weight extraction failed unexpectedly: {str(e)}")
|
392 |
return "Not detected", 0.0
|