Spaces:
Sleeping
Sleeping
Update ocr_engine.py
Browse files- ocr_engine.py +177 -69
ocr_engine.py
CHANGED
|
@@ -1,24 +1,21 @@
|
|
|
|
|
| 1 |
import numpy as np
|
| 2 |
import cv2
|
| 3 |
import re
|
| 4 |
import logging
|
| 5 |
from datetime import datetime
|
| 6 |
import os
|
| 7 |
-
from PIL import Image
|
| 8 |
-
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
|
| 9 |
|
| 10 |
# Set up logging
|
| 11 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 12 |
|
| 13 |
-
# Initialize
|
| 14 |
try:
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
logging.info("TrOCR model and processor loaded successfully")
|
| 18 |
except Exception as e:
|
| 19 |
-
logging.error(f"Failed to
|
| 20 |
-
|
| 21 |
-
model = None
|
| 22 |
|
| 23 |
# Directory for debug images
|
| 24 |
DEBUG_DIR = "debug_images"
|
|
@@ -28,9 +25,7 @@ def save_debug_image(img, filename_suffix, prefix=""):
|
|
| 28 |
"""Save image to debug directory with timestamp."""
|
| 29 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
|
| 30 |
filename = os.path.join(DEBUG_DIR, f"{prefix}{timestamp}_{filename_suffix}.png")
|
| 31 |
-
if
|
| 32 |
-
img.save(filename)
|
| 33 |
-
elif len(img.shape) == 3:
|
| 34 |
cv2.imwrite(filename, cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
| 35 |
else:
|
| 36 |
cv2.imwrite(filename, img)
|
|
@@ -44,23 +39,23 @@ def estimate_brightness(img):
|
|
| 44 |
def preprocess_image(img):
|
| 45 |
"""Preprocess image for OCR with enhanced contrast and noise reduction."""
|
| 46 |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
| 47 |
-
# Dynamic contrast adjustment based on brightness
|
| 48 |
brightness = estimate_brightness(img)
|
| 49 |
-
|
|
|
|
| 50 |
clahe = cv2.createCLAHE(clipLimit=clahe_clip, tileGridSize=(8, 8))
|
| 51 |
enhanced = clahe.apply(gray)
|
| 52 |
save_debug_image(enhanced, "01_preprocess_clahe")
|
| 53 |
# Gaussian blur to reduce noise
|
| 54 |
blurred = cv2.GaussianBlur(enhanced, (3, 3), 0)
|
| 55 |
save_debug_image(blurred, "02_preprocess_blur")
|
| 56 |
-
# Adaptive thresholding
|
| 57 |
-
block_size = max(11, min(31, int(img.shape[0] /
|
| 58 |
thresh = cv2.adaptiveThreshold(blurred, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
| 59 |
-
cv2.THRESH_BINARY_INV, block_size,
|
| 60 |
-
# Morphological operations to
|
| 61 |
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
|
| 62 |
thresh = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=1)
|
| 63 |
-
thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=
|
| 64 |
save_debug_image(thresh, "03_preprocess_morph")
|
| 65 |
return thresh, enhanced
|
| 66 |
|
|
@@ -68,7 +63,7 @@ def correct_rotation(img):
|
|
| 68 |
"""Correct image rotation using edge detection."""
|
| 69 |
try:
|
| 70 |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
| 71 |
-
edges = cv2.Canny(gray, 50, 150)
|
| 72 |
lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=50, minLineLength=30, maxLineGap=10)
|
| 73 |
if lines is not None:
|
| 74 |
angles = [np.arctan2(line[0][3] - line[0][1], line[0][2] - line[0][0]) * 180 / np.pi for line in lines]
|
|
@@ -86,72 +81,185 @@ def correct_rotation(img):
|
|
| 86 |
return img
|
| 87 |
|
| 88 |
def detect_roi(img):
|
| 89 |
-
"""Detect region of interest (display) with
|
| 90 |
try:
|
| 91 |
save_debug_image(img, "04_original")
|
| 92 |
thresh, enhanced = preprocess_image(img)
|
| 93 |
brightness_map = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
| 94 |
-
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
for c in contours:
|
| 100 |
area = cv2.contourArea(c)
|
| 101 |
x, y, w, h = cv2.boundingRect(c)
|
| 102 |
roi_brightness = np.mean(brightness_map[y:y+h, x:x+w])
|
| 103 |
aspect_ratio = w / h
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
0.5 <= aspect_ratio <= 15.0 and w > 50 and h > 20 and roi_brightness > 30):
|
| 107 |
valid_contours.append((c, area * roi_brightness))
|
| 108 |
-
logging.debug(f"Contour: Area={area}, Aspect={aspect_ratio:.2f}, Brightness={roi_brightness:.2f}")
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
|
| 121 |
logging.info("No ROI found, using full image.")
|
| 122 |
-
save_debug_image(img, "
|
| 123 |
return img, None
|
| 124 |
except Exception as e:
|
| 125 |
logging.error(f"ROI detection failed: {str(e)}")
|
| 126 |
-
save_debug_image(img, "
|
| 127 |
return img, None
|
| 128 |
|
| 129 |
-
def
|
| 130 |
-
"""
|
| 131 |
-
|
| 132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
return None, 0.0
|
| 134 |
try:
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
return None, 0.0
|
| 156 |
except Exception as e:
|
| 157 |
logging.error(f"OCR failed: {str(e)}")
|
|
@@ -171,11 +279,11 @@ def extract_weight_from_image(pil_img):
|
|
| 171 |
if roi_bbox:
|
| 172 |
conf_threshold *= 1.1 if (roi_bbox[2] * roi_bbox[3]) > (img.shape[0] * img.shape[1] * 0.3) else 1.0
|
| 173 |
|
| 174 |
-
result, confidence = perform_ocr(roi_img)
|
| 175 |
if result and confidence >= conf_threshold * 100:
|
| 176 |
try:
|
| 177 |
weight = float(result)
|
| 178 |
-
if 0.01 <= weight <= 1000:
|
| 179 |
logging.info(f"Detected weight: {result} kg, Confidence: {confidence:.2f}%")
|
| 180 |
return result, confidence
|
| 181 |
logging.warning(f"Weight {result} out of range.")
|
|
@@ -183,7 +291,7 @@ def extract_weight_from_image(pil_img):
|
|
| 183 |
logging.warning(f"Invalid weight format: {result}")
|
| 184 |
|
| 185 |
logging.info("Primary OCR failed, using full image fallback.")
|
| 186 |
-
result, confidence = perform_ocr(img)
|
| 187 |
if result and confidence >= conf_threshold * 0.9 * 100:
|
| 188 |
try:
|
| 189 |
weight = float(result)
|
|
|
|
| 1 |
+
import easyocr
|
| 2 |
import numpy as np
|
| 3 |
import cv2
|
| 4 |
import re
|
| 5 |
import logging
|
| 6 |
from datetime import datetime
|
| 7 |
import os
|
|
|
|
|
|
|
| 8 |
|
| 9 |
# Set up logging
|
| 10 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 11 |
|
| 12 |
+
# Initialize EasyOCR
|
| 13 |
try:
|
| 14 |
+
easyocr_reader = easyocr.Reader(['en'], gpu=False)
|
| 15 |
+
logging.info("EasyOCR initialized successfully")
|
|
|
|
| 16 |
except Exception as e:
|
| 17 |
+
logging.error(f"Failed to initialize EasyOCR: {str(e)}")
|
| 18 |
+
easyocr_reader = None
|
|
|
|
| 19 |
|
| 20 |
# Directory for debug images
|
| 21 |
DEBUG_DIR = "debug_images"
|
|
|
|
| 25 |
"""Save image to debug directory with timestamp."""
|
| 26 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
|
| 27 |
filename = os.path.join(DEBUG_DIR, f"{prefix}{timestamp}_{filename_suffix}.png")
|
| 28 |
+
if len(img.shape) == 3:
|
|
|
|
|
|
|
| 29 |
cv2.imwrite(filename, cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
| 30 |
else:
|
| 31 |
cv2.imwrite(filename, img)
|
|
|
|
| 39 |
def preprocess_image(img):
|
| 40 |
"""Preprocess image for OCR with enhanced contrast and noise reduction."""
|
| 41 |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
|
|
|
| 42 |
brightness = estimate_brightness(img)
|
| 43 |
+
# Dynamic CLAHE based on brightness
|
| 44 |
+
clahe_clip = 4.0 if brightness < 80 else 2.0
|
| 45 |
clahe = cv2.createCLAHE(clipLimit=clahe_clip, tileGridSize=(8, 8))
|
| 46 |
enhanced = clahe.apply(gray)
|
| 47 |
save_debug_image(enhanced, "01_preprocess_clahe")
|
| 48 |
# Gaussian blur to reduce noise
|
| 49 |
blurred = cv2.GaussianBlur(enhanced, (3, 3), 0)
|
| 50 |
save_debug_image(blurred, "02_preprocess_blur")
|
| 51 |
+
# Adaptive thresholding with dynamic block size
|
| 52 |
+
block_size = max(11, min(31, int(img.shape[0] / 15) * 2 + 1))
|
| 53 |
thresh = cv2.adaptiveThreshold(blurred, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
| 54 |
+
cv2.THRESH_BINARY_INV, block_size, 5)
|
| 55 |
+
# Morphological operations to enhance digits
|
| 56 |
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
|
| 57 |
thresh = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=1)
|
| 58 |
+
thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=2)
|
| 59 |
save_debug_image(thresh, "03_preprocess_morph")
|
| 60 |
return thresh, enhanced
|
| 61 |
|
|
|
|
| 63 |
"""Correct image rotation using edge detection."""
|
| 64 |
try:
|
| 65 |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
| 66 |
+
edges = cv2.Canny(gray, 50, 150, apertureSize=3)
|
| 67 |
lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=50, minLineLength=30, maxLineGap=10)
|
| 68 |
if lines is not None:
|
| 69 |
angles = [np.arctan2(line[0][3] - line[0][1], line[0][2] - line[0][0]) * 180 / np.pi for line in lines]
|
|
|
|
| 81 |
return img
|
| 82 |
|
| 83 |
def detect_roi(img):
|
| 84 |
+
"""Detect region of interest (display) with multi-scale contour filtering."""
|
| 85 |
try:
|
| 86 |
save_debug_image(img, "04_original")
|
| 87 |
thresh, enhanced = preprocess_image(img)
|
| 88 |
brightness_map = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
| 89 |
+
# Try multiple block sizes for robust ROI detection
|
| 90 |
+
block_sizes = [max(11, min(31, int(img.shape[0] / s) * 2 + 1)) for s in [15, 20, 25]]
|
| 91 |
+
valid_contours = []
|
| 92 |
+
img_area = img.shape[0] * img.shape[1]
|
| 93 |
|
| 94 |
+
for block_size in block_sizes:
|
| 95 |
+
temp_thresh = cv2.adaptiveThreshold(enhanced, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
| 96 |
+
cv2.THRESH_BINARY_INV, block_size, 5)
|
| 97 |
+
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
|
| 98 |
+
temp_thresh = cv2.morphologyEx(temp_thresh, cv2.MORPH_CLOSE, kernel, iterations=2)
|
| 99 |
+
save_debug_image(temp_thresh, f"05_roi_threshold_block{block_size}")
|
| 100 |
+
contours, _ = cv2.findContours(temp_thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
| 101 |
+
|
| 102 |
for c in contours:
|
| 103 |
area = cv2.contourArea(c)
|
| 104 |
x, y, w, h = cv2.boundingRect(c)
|
| 105 |
roi_brightness = np.mean(brightness_map[y:y+h, x:x+w])
|
| 106 |
aspect_ratio = w / h
|
| 107 |
+
if (300 < area < (img_area * 0.7) and
|
| 108 |
+
0.5 <= aspect_ratio <= 10.0 and w > 60 and h > 25 and roi_brightness > 40):
|
|
|
|
| 109 |
valid_contours.append((c, area * roi_brightness))
|
| 110 |
+
logging.debug(f"Contour (block {block_size}): Area={area}, Aspect={aspect_ratio:.2f}, Brightness={roi_brightness:.2f}")
|
| 111 |
+
|
| 112 |
+
if valid_contours:
|
| 113 |
+
contour, _ = max(valid_contours, key=lambda x: x[1])
|
| 114 |
+
x, y, w, h = cv2.boundingRect(contour)
|
| 115 |
+
padding = max(20, min(60, int(min(w, h) * 0.3)))
|
| 116 |
+
x, y = max(0, x - padding), max(0, y - padding)
|
| 117 |
+
w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y)
|
| 118 |
+
roi_img = img[y:y+h, x:x+w]
|
| 119 |
+
save_debug_image(roi_img, "06_detected_roi")
|
| 120 |
+
logging.info(f"Detected ROI: ({x}, {y}, {w}, {h})")
|
| 121 |
+
return roi_img, (x, y, w, h)
|
| 122 |
|
| 123 |
logging.info("No ROI found, using full image.")
|
| 124 |
+
save_debug_image(img, "06_no_roi_fallback")
|
| 125 |
return img, None
|
| 126 |
except Exception as e:
|
| 127 |
logging.error(f"ROI detection failed: {str(e)}")
|
| 128 |
+
save_debug_image(img, "06_roi_error_fallback")
|
| 129 |
return img, None
|
| 130 |
|
| 131 |
+
def detect_segments(digit_img, brightness):
|
| 132 |
+
"""Detect seven-segment digits with adaptive thresholds."""
|
| 133 |
+
try:
|
| 134 |
+
h, w = digit_img.shape
|
| 135 |
+
if h < 10 or w < 5:
|
| 136 |
+
logging.debug("Digit image too small for segment detection.")
|
| 137 |
+
return None
|
| 138 |
+
|
| 139 |
+
# Dynamic segment threshold based on brightness
|
| 140 |
+
segment_threshold = 0.2 if brightness < 80 else 0.3
|
| 141 |
+
segments = {
|
| 142 |
+
'top': (int(w*0.1), int(w*0.9), 0, int(h*0.25)),
|
| 143 |
+
'middle': (int(w*0.1), int(w*0.9), int(h*0.45), int(h*0.55)),
|
| 144 |
+
'bottom': (int(w*0.1), int(w*0.9), int(h*0.75), h),
|
| 145 |
+
'left_top': (0, int(w*0.3), int(h*0.1), int(h*0.5)),
|
| 146 |
+
'left_bottom': (0, int(w*0.3), int(h*0.5), int(h*0.9)),
|
| 147 |
+
'right_top': (int(w*0.7), w, int(h*0.1), int(h*0.5)),
|
| 148 |
+
'right_bottom': (int(w*0.7), w, int(h*0.5), int(h*0.9))
|
| 149 |
+
}
|
| 150 |
+
|
| 151 |
+
segment_presence = {}
|
| 152 |
+
for name, (x1, x2, y1, y2) in segments.items():
|
| 153 |
+
x1, y1 = max(0, x1), max(0, y1)
|
| 154 |
+
x2, y2 = min(w, x2), min(h, y2)
|
| 155 |
+
region = digit_img[y1:y2, x1:x2]
|
| 156 |
+
if region.size == 0:
|
| 157 |
+
segment_presence[name] = False
|
| 158 |
+
continue
|
| 159 |
+
pixel_count = np.sum(region == 255)
|
| 160 |
+
total_pixels = region.size
|
| 161 |
+
segment_presence[name] = pixel_count / total_pixels > segment_threshold
|
| 162 |
+
logging.debug(f"Segment {name}: {pixel_count}/{total_pixels} = {pixel_count/total_pixels:.2f}")
|
| 163 |
+
|
| 164 |
+
digit_patterns = {
|
| 165 |
+
'0': ('top', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'),
|
| 166 |
+
'1': ('right_top', 'right_bottom'),
|
| 167 |
+
'2': ('top', 'middle', 'bottom', 'left_bottom', 'right_top'),
|
| 168 |
+
'3': ('top', 'middle', 'bottom', 'right_top', 'right_bottom'),
|
| 169 |
+
'4': ('middle', 'left_top', 'right_top', 'right_bottom'),
|
| 170 |
+
'5': ('top', 'middle', 'bottom', 'left_top', 'right_bottom'),
|
| 171 |
+
'6': ('top', 'middle', 'bottom', 'left_top', 'left_bottom', 'right_bottom'),
|
| 172 |
+
'7': ('top', 'right_top', 'right_bottom'),
|
| 173 |
+
'8': ('top', 'middle', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'),
|
| 174 |
+
'9': ('top', 'middle', 'bottom', 'left_top', 'right_top', 'right_bottom')
|
| 175 |
+
}
|
| 176 |
+
|
| 177 |
+
best_match, best_score = None, -1
|
| 178 |
+
for digit, pattern in digit_patterns.items():
|
| 179 |
+
matches = sum(1 for segment in pattern if segment_presence.get(segment, False))
|
| 180 |
+
non_matches = sum(1 for segment in segment_presence if segment not in pattern and segment_presence[segment])
|
| 181 |
+
score = matches - 0.2 * non_matches
|
| 182 |
+
if matches >= len(pattern) * 0.6:
|
| 183 |
+
score += 1.0
|
| 184 |
+
if score > best_score:
|
| 185 |
+
best_score = score
|
| 186 |
+
best_match = digit
|
| 187 |
+
logging.debug(f"Segment detection: {segment_presence}, Digit: {best_match}, Score: {best_score:.2f}")
|
| 188 |
+
return best_match
|
| 189 |
+
except Exception as e:
|
| 190 |
+
logging.error(f"Segment detection failed: {str(e)}")
|
| 191 |
+
return None
|
| 192 |
+
|
| 193 |
+
def perform_ocr(img, roi_bbox):
|
| 194 |
+
"""Perform OCR with EasyOCR and seven-segment fallback."""
|
| 195 |
+
if easyocr_reader is None:
|
| 196 |
+
logging.error("EasyOCR not initialized, cannot perform OCR.")
|
| 197 |
return None, 0.0
|
| 198 |
try:
|
| 199 |
+
thresh, enhanced = preprocess_image(img)
|
| 200 |
+
brightness = estimate_brightness(img)
|
| 201 |
+
# Dynamic EasyOCR parameters
|
| 202 |
+
results = easyocr_reader.readtext(thresh, detail=1, paragraph=False,
|
| 203 |
+
contrast_ths=0.1, adjust_contrast=1.5,
|
| 204 |
+
text_threshold=0.3, mag_ratio=3.0,
|
| 205 |
+
allowlist='0123456789.', batch_size=1, y_ths=0.2)
|
| 206 |
+
save_debug_image(thresh, "07_ocr_threshold")
|
| 207 |
+
logging.info(f"EasyOCR results: {results}")
|
| 208 |
+
|
| 209 |
+
if not results:
|
| 210 |
+
logging.info("EasyOCR failed, trying fallback parameters.")
|
| 211 |
+
results = easyocr_reader.readtext(thresh, detail=1, paragraph=False,
|
| 212 |
+
contrast_ths=0.05, adjust_contrast=2.0,
|
| 213 |
+
text_threshold=0.2, mag_ratio=4.0,
|
| 214 |
+
allowlist='0123456789.', batch_size=1, y_ths=0.2)
|
| 215 |
+
save_debug_image(thresh, "07_fallback_threshold")
|
| 216 |
+
|
| 217 |
+
digits_info = []
|
| 218 |
+
for (bbox, text, conf) in results:
|
| 219 |
+
(x1, y1), (x2, y2), (x3, y3), (x4, y4) = bbox
|
| 220 |
+
h_bbox = max(y1, y2, y3, y4) - min(y1, y2, y3, y4)
|
| 221 |
+
if (text.isdigit() or text == '.') and h_bbox > 10 and conf > 0.2:
|
| 222 |
+
x_min, x_max = int(min(x1, x4)), int(max(x2, x3))
|
| 223 |
+
y_min, y_max = int(min(y1, y2)), int(max(y3, y4))
|
| 224 |
+
digits_info.append((x_min, x_max, y_min, y_max, text, conf))
|
| 225 |
+
|
| 226 |
+
if digits_info:
|
| 227 |
+
digits_info.sort(key=lambda x: x[0])
|
| 228 |
+
recognized_text = ""
|
| 229 |
+
total_conf = 0.0
|
| 230 |
+
conf_count = 0
|
| 231 |
+
for idx, (x_min, x_max, y_min, y_max, char, conf) in enumerate(digits_info):
|
| 232 |
+
x_min, y_min = max(0, x_min), max(0, y_min)
|
| 233 |
+
x_max, y_max = min(thresh.shape[1], x_max), min(thresh.shape[0], y_max)
|
| 234 |
+
if x_max <= x_min or y_max <= y_min:
|
| 235 |
+
continue
|
| 236 |
+
if conf < 0.7 and char != '.':
|
| 237 |
+
digit_crop = thresh[y_min:y_max, x_min:x_max]
|
| 238 |
+
save_debug_image(digit_crop, f"08_digit_crop_{idx}_{char}")
|
| 239 |
+
segment_digit = detect_segments(digit_crop, brightness)
|
| 240 |
+
if segment_digit:
|
| 241 |
+
recognized_text += segment_digit
|
| 242 |
+
total_conf += 0.85
|
| 243 |
+
logging.debug(f"Used segment detection for char {char}: {segment_digit}")
|
| 244 |
+
else:
|
| 245 |
+
recognized_text += char
|
| 246 |
+
total_conf += conf
|
| 247 |
+
conf_count += 1
|
| 248 |
+
else:
|
| 249 |
+
recognized_text += char
|
| 250 |
+
total_conf += conf
|
| 251 |
+
conf_count += 1
|
| 252 |
+
|
| 253 |
+
avg_conf = total_conf / conf_count if conf_count > 0 else 0.0
|
| 254 |
+
text = re.sub(r"[^\d\.]", "", recognized_text)
|
| 255 |
+
if text.count('.') > 1:
|
| 256 |
+
text = text.replace('.', '', text.count('.') - 1)
|
| 257 |
+
text = text.strip('.')
|
| 258 |
+
if text and re.fullmatch(r"^\d*\.?\d*$", text):
|
| 259 |
+
text = text.lstrip('0') or '0'
|
| 260 |
+
logging.info(f"Validated text: {text}, Confidence: {avg_conf:.2f}")
|
| 261 |
+
return text, avg_conf * 100
|
| 262 |
+
logging.info("No valid digits detected.")
|
| 263 |
return None, 0.0
|
| 264 |
except Exception as e:
|
| 265 |
logging.error(f"OCR failed: {str(e)}")
|
|
|
|
| 279 |
if roi_bbox:
|
| 280 |
conf_threshold *= 1.1 if (roi_bbox[2] * roi_bbox[3]) > (img.shape[0] * img.shape[1] * 0.3) else 1.0
|
| 281 |
|
| 282 |
+
result, confidence = perform_ocr(roi_img, roi_bbox)
|
| 283 |
if result and confidence >= conf_threshold * 100:
|
| 284 |
try:
|
| 285 |
weight = float(result)
|
| 286 |
+
if 0.01 <= weight <= 1000:
|
| 287 |
logging.info(f"Detected weight: {result} kg, Confidence: {confidence:.2f}%")
|
| 288 |
return result, confidence
|
| 289 |
logging.warning(f"Weight {result} out of range.")
|
|
|
|
| 291 |
logging.warning(f"Invalid weight format: {result}")
|
| 292 |
|
| 293 |
logging.info("Primary OCR failed, using full image fallback.")
|
| 294 |
+
result, confidence = perform_ocr(img, None)
|
| 295 |
if result and confidence >= conf_threshold * 0.9 * 100:
|
| 296 |
try:
|
| 297 |
weight = float(result)
|