Spaces:
Running
Running
Update ocr_engine.py
Browse files- ocr_engine.py +59 -77
ocr_engine.py
CHANGED
@@ -1,22 +1,15 @@
|
|
1 |
-
import
|
2 |
import numpy as np
|
3 |
import cv2
|
4 |
import re
|
5 |
import logging
|
6 |
from datetime import datetime
|
7 |
import os
|
|
|
8 |
|
9 |
# Set up logging
|
10 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
11 |
|
12 |
-
# Initialize EasyOCR
|
13 |
-
try:
|
14 |
-
easyocr_reader = easyocr.Reader(['en'], gpu=False)
|
15 |
-
logging.info("EasyOCR initialized successfully")
|
16 |
-
except Exception as e:
|
17 |
-
logging.error(f"Failed to initialize EasyOCR: {str(e)}")
|
18 |
-
easyocr_reader = None
|
19 |
-
|
20 |
# Directory for debug images
|
21 |
DEBUG_DIR = "debug_images"
|
22 |
os.makedirs(DEBUG_DIR, exist_ok=True)
|
@@ -25,7 +18,9 @@ def save_debug_image(img, filename_suffix, prefix=""):
|
|
25 |
"""Save image to debug directory with timestamp."""
|
26 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
|
27 |
filename = os.path.join(DEBUG_DIR, f"{prefix}{timestamp}_{filename_suffix}.png")
|
28 |
-
if
|
|
|
|
|
29 |
cv2.imwrite(filename, cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
30 |
else:
|
31 |
cv2.imwrite(filename, img)
|
@@ -40,19 +35,19 @@ def preprocess_image(img):
|
|
40 |
"""Preprocess image for OCR with enhanced contrast and noise reduction."""
|
41 |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
42 |
brightness = estimate_brightness(img)
|
43 |
-
# Dynamic CLAHE
|
44 |
-
clahe_clip =
|
45 |
clahe = cv2.createCLAHE(clipLimit=clahe_clip, tileGridSize=(8, 8))
|
46 |
enhanced = clahe.apply(gray)
|
47 |
save_debug_image(enhanced, "01_preprocess_clahe")
|
48 |
-
# Gaussian blur
|
49 |
blurred = cv2.GaussianBlur(enhanced, (3, 3), 0)
|
50 |
save_debug_image(blurred, "02_preprocess_blur")
|
51 |
-
#
|
52 |
block_size = max(11, min(31, int(img.shape[0] / 15) * 2 + 1))
|
53 |
thresh = cv2.adaptiveThreshold(blurred, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
54 |
cv2.THRESH_BINARY_INV, block_size, 5)
|
55 |
-
# Morphological operations
|
56 |
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
|
57 |
thresh = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=1)
|
58 |
thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=2)
|
@@ -86,8 +81,7 @@ def detect_roi(img):
|
|
86 |
save_debug_image(img, "04_original")
|
87 |
thresh, enhanced = preprocess_image(img)
|
88 |
brightness_map = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
89 |
-
|
90 |
-
block_sizes = [max(11, min(31, int(img.shape[0] / s) * 2 + 1)) for s in [15, 20, 25]]
|
91 |
valid_contours = []
|
92 |
img_area = img.shape[0] * img.shape[1]
|
93 |
|
@@ -104,15 +98,15 @@ def detect_roi(img):
|
|
104 |
x, y, w, h = cv2.boundingRect(c)
|
105 |
roi_brightness = np.mean(brightness_map[y:y+h, x:x+w])
|
106 |
aspect_ratio = w / h
|
107 |
-
if (
|
108 |
-
0.5 <= aspect_ratio <=
|
109 |
valid_contours.append((c, area * roi_brightness))
|
110 |
logging.debug(f"Contour (block {block_size}): Area={area}, Aspect={aspect_ratio:.2f}, Brightness={roi_brightness:.2f}")
|
111 |
|
112 |
if valid_contours:
|
113 |
contour, _ = max(valid_contours, key=lambda x: x[1])
|
114 |
x, y, w, h = cv2.boundingRect(contour)
|
115 |
-
padding = max(20, min(60, int(min(w, h) * 0.
|
116 |
x, y = max(0, x - padding), max(0, y - padding)
|
117 |
w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y)
|
118 |
roi_img = img[y:y+h, x:x+w]
|
@@ -132,12 +126,11 @@ def detect_segments(digit_img, brightness):
|
|
132 |
"""Detect seven-segment digits with adaptive thresholds."""
|
133 |
try:
|
134 |
h, w = digit_img.shape
|
135 |
-
if h <
|
136 |
logging.debug("Digit image too small for segment detection.")
|
137 |
return None
|
138 |
|
139 |
-
|
140 |
-
segment_threshold = 0.2 if brightness < 80 else 0.3
|
141 |
segments = {
|
142 |
'top': (int(w*0.1), int(w*0.9), 0, int(h*0.25)),
|
143 |
'middle': (int(w*0.1), int(w*0.9), int(h*0.45), int(h*0.55)),
|
@@ -178,9 +171,9 @@ def detect_segments(digit_img, brightness):
|
|
178 |
for digit, pattern in digit_patterns.items():
|
179 |
matches = sum(1 for segment in pattern if segment_presence.get(segment, False))
|
180 |
non_matches = sum(1 for segment in segment_presence if segment not in pattern and segment_presence[segment])
|
181 |
-
score = matches - 0.
|
182 |
-
if matches >= len(pattern) * 0.
|
183 |
-
score += 1.
|
184 |
if score > best_score:
|
185 |
best_score = score
|
186 |
best_match = digit
|
@@ -191,74 +184,63 @@ def detect_segments(digit_img, brightness):
|
|
191 |
return None
|
192 |
|
193 |
def perform_ocr(img, roi_bbox):
|
194 |
-
"""Perform OCR with
|
195 |
-
if easyocr_reader is None:
|
196 |
-
logging.error("EasyOCR not initialized, cannot perform OCR.")
|
197 |
-
return None, 0.0
|
198 |
try:
|
199 |
thresh, enhanced = preprocess_image(img)
|
200 |
brightness = estimate_brightness(img)
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
logging.info(f"
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
|
|
|
|
|
|
216 |
|
|
|
|
|
|
|
217 |
digits_info = []
|
218 |
-
for
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
y_min, y_max = int(min(y1, y2)), int(max(y3, y4))
|
224 |
-
digits_info.append((x_min, x_max, y_min, y_max, text, conf))
|
225 |
-
|
226 |
if digits_info:
|
227 |
digits_info.sort(key=lambda x: x[0])
|
228 |
recognized_text = ""
|
229 |
-
|
230 |
-
conf_count = 0
|
231 |
-
for idx, (x_min, x_max, y_min, y_max, char, conf) in enumerate(digits_info):
|
232 |
x_min, y_min = max(0, x_min), max(0, y_min)
|
233 |
x_max, y_max = min(thresh.shape[1], x_max), min(thresh.shape[0], y_max)
|
234 |
if x_max <= x_min or y_max <= y_min:
|
235 |
continue
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
logging.debug(f"Used segment detection for char {char}: {segment_digit}")
|
244 |
-
else:
|
245 |
-
recognized_text += char
|
246 |
-
total_conf += conf
|
247 |
-
conf_count += 1
|
248 |
-
else:
|
249 |
-
recognized_text += char
|
250 |
-
total_conf += conf
|
251 |
-
conf_count += 1
|
252 |
-
|
253 |
-
avg_conf = total_conf / conf_count if conf_count > 0 else 0.0
|
254 |
text = re.sub(r"[^\d\.]", "", recognized_text)
|
255 |
if text.count('.') > 1:
|
256 |
text = text.replace('.', '', text.count('.') - 1)
|
257 |
text = text.strip('.')
|
258 |
if text and re.fullmatch(r"^\d*\.?\d*$", text):
|
259 |
text = text.lstrip('0') or '0'
|
260 |
-
|
261 |
-
|
|
|
|
|
262 |
logging.info("No valid digits detected.")
|
263 |
return None, 0.0
|
264 |
except Exception as e:
|
@@ -273,7 +255,7 @@ def extract_weight_from_image(pil_img):
|
|
273 |
save_debug_image(img, "00_input_image")
|
274 |
img = correct_rotation(img)
|
275 |
brightness = estimate_brightness(img)
|
276 |
-
conf_threshold = 0.
|
277 |
|
278 |
roi_img, roi_bbox = detect_roi(img)
|
279 |
if roi_bbox:
|
|
|
1 |
+
import pytesseract
|
2 |
import numpy as np
|
3 |
import cv2
|
4 |
import re
|
5 |
import logging
|
6 |
from datetime import datetime
|
7 |
import os
|
8 |
+
from PIL import Image
|
9 |
|
10 |
# Set up logging
|
11 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
# Directory for debug images
|
14 |
DEBUG_DIR = "debug_images"
|
15 |
os.makedirs(DEBUG_DIR, exist_ok=True)
|
|
|
18 |
"""Save image to debug directory with timestamp."""
|
19 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
|
20 |
filename = os.path.join(DEBUG_DIR, f"{prefix}{timestamp}_{filename_suffix}.png")
|
21 |
+
if isinstance(img, Image.Image):
|
22 |
+
img.save(filename)
|
23 |
+
elif len(img.shape) == 3:
|
24 |
cv2.imwrite(filename, cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
25 |
else:
|
26 |
cv2.imwrite(filename, img)
|
|
|
35 |
"""Preprocess image for OCR with enhanced contrast and noise reduction."""
|
36 |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
37 |
brightness = estimate_brightness(img)
|
38 |
+
# Dynamic CLAHE
|
39 |
+
clahe_clip = 5.0 if brightness < 80 else 3.0
|
40 |
clahe = cv2.createCLAHE(clipLimit=clahe_clip, tileGridSize=(8, 8))
|
41 |
enhanced = clahe.apply(gray)
|
42 |
save_debug_image(enhanced, "01_preprocess_clahe")
|
43 |
+
# Gaussian blur
|
44 |
blurred = cv2.GaussianBlur(enhanced, (3, 3), 0)
|
45 |
save_debug_image(blurred, "02_preprocess_blur")
|
46 |
+
# Dynamic thresholding
|
47 |
block_size = max(11, min(31, int(img.shape[0] / 15) * 2 + 1))
|
48 |
thresh = cv2.adaptiveThreshold(blurred, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
49 |
cv2.THRESH_BINARY_INV, block_size, 5)
|
50 |
+
# Morphological operations
|
51 |
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
|
52 |
thresh = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=1)
|
53 |
thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=2)
|
|
|
81 |
save_debug_image(img, "04_original")
|
82 |
thresh, enhanced = preprocess_image(img)
|
83 |
brightness_map = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
84 |
+
block_sizes = [max(11, min(31, int(img.shape[0] / s) * 2 + 1)) for s in [12, 15, 18]]
|
|
|
85 |
valid_contours = []
|
86 |
img_area = img.shape[0] * img.shape[1]
|
87 |
|
|
|
98 |
x, y, w, h = cv2.boundingRect(c)
|
99 |
roi_brightness = np.mean(brightness_map[y:y+h, x:x+w])
|
100 |
aspect_ratio = w / h
|
101 |
+
if (400 < area < (img_area * 0.6) and
|
102 |
+
0.5 <= aspect_ratio <= 8.0 and w > 70 and h > 30 and roi_brightness > 50):
|
103 |
valid_contours.append((c, area * roi_brightness))
|
104 |
logging.debug(f"Contour (block {block_size}): Area={area}, Aspect={aspect_ratio:.2f}, Brightness={roi_brightness:.2f}")
|
105 |
|
106 |
if valid_contours:
|
107 |
contour, _ = max(valid_contours, key=lambda x: x[1])
|
108 |
x, y, w, h = cv2.boundingRect(contour)
|
109 |
+
padding = max(20, min(60, int(min(w, h) * 0.4)))
|
110 |
x, y = max(0, x - padding), max(0, y - padding)
|
111 |
w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y)
|
112 |
roi_img = img[y:y+h, x:x+w]
|
|
|
126 |
"""Detect seven-segment digits with adaptive thresholds."""
|
127 |
try:
|
128 |
h, w = digit_img.shape
|
129 |
+
if h < 15 or w < 8:
|
130 |
logging.debug("Digit image too small for segment detection.")
|
131 |
return None
|
132 |
|
133 |
+
segment_threshold = 0.25 if brightness < 80 else 0.35
|
|
|
134 |
segments = {
|
135 |
'top': (int(w*0.1), int(w*0.9), 0, int(h*0.25)),
|
136 |
'middle': (int(w*0.1), int(w*0.9), int(h*0.45), int(h*0.55)),
|
|
|
171 |
for digit, pattern in digit_patterns.items():
|
172 |
matches = sum(1 for segment in pattern if segment_presence.get(segment, False))
|
173 |
non_matches = sum(1 for segment in segment_presence if segment not in pattern and segment_presence[segment])
|
174 |
+
score = matches - 0.15 * non_matches
|
175 |
+
if matches >= len(pattern) * 0.65:
|
176 |
+
score += 1.2
|
177 |
if score > best_score:
|
178 |
best_score = score
|
179 |
best_match = digit
|
|
|
184 |
return None
|
185 |
|
186 |
def perform_ocr(img, roi_bbox):
|
187 |
+
"""Perform OCR with Tesseract and seven-segment fallback."""
|
|
|
|
|
|
|
188 |
try:
|
189 |
thresh, enhanced = preprocess_image(img)
|
190 |
brightness = estimate_brightness(img)
|
191 |
+
pil_img = Image.fromarray(enhanced)
|
192 |
+
save_debug_image(pil_img, "07_ocr_input")
|
193 |
+
|
194 |
+
# Tesseract OCR with numeric config
|
195 |
+
custom_config = r'--oem 3 --psm 7 -c tessedit_char_whitelist=0123456789.'
|
196 |
+
text = pytesseract.image_to_string(pil_img, config=custom_config)
|
197 |
+
logging.info(f"Tesseract raw output: {text}")
|
198 |
+
|
199 |
+
# Clean and validate text
|
200 |
+
text = re.sub(r"[^\d\.]", "", text)
|
201 |
+
if text.count('.') > 1:
|
202 |
+
text = text.replace('.', '', text.count('.') - 1)
|
203 |
+
text = text.strip('.')
|
204 |
+
if text and re.fullmatch(r"^\d*\.?\d*$", text):
|
205 |
+
text = text.lstrip('0') or '0'
|
206 |
+
confidence = 95.0 if len(text.replace('.', '')) >= 2 else 90.0
|
207 |
+
logging.info(f"Validated Tesseract text: {text}, Confidence: {confidence:.2f}%")
|
208 |
+
return text, confidence
|
209 |
|
210 |
+
# Fallback to seven-segment detection
|
211 |
+
logging.info("Tesseract failed, using seven-segment detection.")
|
212 |
+
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
213 |
digits_info = []
|
214 |
+
for c in contours:
|
215 |
+
x, y, w, h = cv2.boundingRect(c)
|
216 |
+
if w > 10 and h > 15 and 0.2 <= w/h <= 1.5:
|
217 |
+
digits_info.append((x, x+w, y, y+h))
|
218 |
+
|
|
|
|
|
|
|
219 |
if digits_info:
|
220 |
digits_info.sort(key=lambda x: x[0])
|
221 |
recognized_text = ""
|
222 |
+
for idx, (x_min, x_max, y_min, y_max) in enumerate(digits_info):
|
|
|
|
|
223 |
x_min, y_min = max(0, x_min), max(0, y_min)
|
224 |
x_max, y_max = min(thresh.shape[1], x_max), min(thresh.shape[0], y_max)
|
225 |
if x_max <= x_min or y_max <= y_min:
|
226 |
continue
|
227 |
+
digit_crop = thresh[y_min:y_max, x_min:x_max]
|
228 |
+
save_debug_image(digit_crop, f"08_digit_crop_{idx}")
|
229 |
+
segment_digit = detect_segments(digit_crop, brightness)
|
230 |
+
if segment_digit:
|
231 |
+
recognized_text += segment_digit
|
232 |
+
elif idx < len(digits_info) - 1 and (digits_info[idx+1][0] - x_max) < 10:
|
233 |
+
recognized_text += '.' # Assume decimal point for close digits
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
text = re.sub(r"[^\d\.]", "", recognized_text)
|
235 |
if text.count('.') > 1:
|
236 |
text = text.replace('.', '', text.count('.') - 1)
|
237 |
text = text.strip('.')
|
238 |
if text and re.fullmatch(r"^\d*\.?\d*$", text):
|
239 |
text = text.lstrip('0') or '0'
|
240 |
+
confidence = 90.0
|
241 |
+
logging.info(f"Validated segment text: {text}, Confidence: {confidence:.2f}%")
|
242 |
+
return text, confidence
|
243 |
+
|
244 |
logging.info("No valid digits detected.")
|
245 |
return None, 0.0
|
246 |
except Exception as e:
|
|
|
255 |
save_debug_image(img, "00_input_image")
|
256 |
img = correct_rotation(img)
|
257 |
brightness = estimate_brightness(img)
|
258 |
+
conf_threshold = 0.8 if brightness > 100 else 0.6
|
259 |
|
260 |
roi_img, roi_bbox = detect_roi(img)
|
261 |
if roi_bbox:
|