Sanjayraju30 commited on
Commit
e71776d
·
verified ·
1 Parent(s): 0507081

AutoWeightLogger1/train_mnist_model.py

Browse files
Files changed (1) hide show
  1. train_mnist_model.py +0 -47
train_mnist_model.py DELETED
@@ -1,47 +0,0 @@
1
- import tensorflow as tf
2
- from tensorflow.keras import layers, models
3
- import logging
4
-
5
- # Set up logging
6
- logging.basicConfig(level=logging.INFO)
7
- logger = logging.getLogger(__name__)
8
-
9
- # Load and preprocess MNIST dataset
10
- def load_and_preprocess_data():
11
- try:
12
- (x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
13
- x_train = x_train.reshape(-1, 28, 28, 1).astype('float32') / 255.0
14
- x_test = x_test.reshape(-1, 28, 28, 1).astype('float32') / 255.0
15
- logger.info("MNIST dataset loaded and preprocessed successfully")
16
- return x_train, y_train, x_test, y_test
17
- except Exception as e:
18
- logger.error(f"Error loading MNIST data: {e}")
19
- return None, None, None, None
20
-
21
- # Build and train CNN model
22
- def train_model():
23
- x_train, y_train, x_test, y_test = load_and_preprocess_data()
24
- if x_train is None:
25
- return
26
-
27
- model = models.Sequential([
28
- layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),
29
- layers.MaxPooling2D((2, 2)),
30
- layers.Conv2D(64, (3, 3), activation='relu'),
31
- layers.MaxPooling2D((2, 2)),
32
- layers.Flatten(),
33
- layers.Dense(128, activation='relu'),
34
- layers.Dense(10, activation='softmax')
35
- ])
36
-
37
- model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
38
-
39
- try:
40
- model.fit(x_train, y_train, epochs=5, validation_data=(x_test, y_test))
41
- model.save('mnist_cnn.h5')
42
- logger.info("Model trained and saved as mnist_cnn.h5")
43
- except Exception as e:
44
- logger.error(f"Error training model: {e}")
45
-
46
- if __name__ == "__main__":
47
- train_model()