Spaces:
Running
Running
Update ocr_engine.py
Browse files- ocr_engine.py +19 -17
ocr_engine.py
CHANGED
@@ -9,29 +9,31 @@ def extract_weight_from_image(pil_img):
|
|
9 |
try:
|
10 |
img = np.array(pil_img)
|
11 |
|
12 |
-
#
|
|
|
|
|
|
|
|
|
13 |
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
|
14 |
-
gray = cv2.resize(gray, None, fx=2, fy=2, interpolation=cv2.
|
15 |
gray = cv2.equalizeHist(gray)
|
16 |
-
|
17 |
-
|
|
|
|
|
18 |
|
19 |
-
# OCR
|
20 |
-
result = reader.readtext(
|
21 |
combined_text = " ".join(result)
|
22 |
-
print("OCR
|
23 |
|
24 |
-
#
|
25 |
-
match = re.search(r"(\d{1,4}(?:\.\d{1,2})?)\s*(kg|KG|Kg)", combined_text)
|
26 |
if match:
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
if fallback:
|
32 |
-
return f"{fallback.group(0)} kg", 75.0
|
33 |
-
|
34 |
-
return "No weight detected kg", 0.0
|
35 |
|
36 |
except Exception as e:
|
37 |
return f"Error: {str(e)}", 0.0
|
|
|
9 |
try:
|
10 |
img = np.array(pil_img)
|
11 |
|
12 |
+
# Resize if image is too large
|
13 |
+
if img.shape[1] > 1000:
|
14 |
+
img = cv2.resize(img, (1000, int(img.shape[0] * 1000 / img.shape[1])))
|
15 |
+
|
16 |
+
# Preprocessing
|
17 |
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
|
18 |
+
gray = cv2.resize(gray, None, fx=2, fy=2, interpolation=cv2.INTER_CUBIC)
|
19 |
gray = cv2.equalizeHist(gray)
|
20 |
+
blurred = cv2.GaussianBlur(gray, (3, 3), 0)
|
21 |
+
thresh = cv2.adaptiveThreshold(
|
22 |
+
blurred, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 11, 2
|
23 |
+
)
|
24 |
|
25 |
+
# OCR
|
26 |
+
result = reader.readtext(thresh, detail=0)
|
27 |
combined_text = " ".join(result)
|
28 |
+
print("OCR Text:", combined_text)
|
29 |
|
30 |
+
# Regex to match numbers with optional 'kg'
|
31 |
+
match = re.search(r"(\d{1,4}(?:\.\d{1,2})?)\s*(kg|KG|Kg)?", combined_text)
|
32 |
if match:
|
33 |
+
weight = match.group(1)
|
34 |
+
return f"{weight} kg", 95.0
|
35 |
+
else:
|
36 |
+
return "No weight detected kg", 0.0
|
|
|
|
|
|
|
|
|
37 |
|
38 |
except Exception as e:
|
39 |
return f"Error: {str(e)}", 0.0
|