Spaces:
Running
Running
Update ocr_engine.py
Browse files- ocr_engine.py +29 -6
ocr_engine.py
CHANGED
@@ -5,18 +5,45 @@ import re
|
|
5 |
|
6 |
reader = easyocr.Reader(['en'], gpu=False)
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
def extract_weight_from_image(pil_img):
|
9 |
try:
|
10 |
img = np.array(pil_img)
|
11 |
|
12 |
-
# Resize if too large
|
13 |
max_dim = 1000
|
14 |
height, width = img.shape[:2]
|
15 |
if max(height, width) > max_dim:
|
16 |
scale = max_dim / max(height, width)
|
17 |
img = cv2.resize(img, None, fx=scale, fy=scale, interpolation=cv2.INTER_AREA)
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
results = reader.readtext(
|
20 |
|
21 |
best_weight = None
|
22 |
best_conf = 0.0
|
@@ -27,7 +54,6 @@ def extract_weight_from_image(pil_img):
|
|
27 |
text, conf = item[1]
|
28 |
cleaned = text.lower().strip()
|
29 |
|
30 |
-
# Fix misread characters
|
31 |
cleaned = cleaned.replace(",", ".")
|
32 |
cleaned = cleaned.replace("o", "0").replace("O", "0")
|
33 |
cleaned = cleaned.replace("s", "5").replace("S", "5")
|
@@ -35,13 +61,11 @@ def extract_weight_from_image(pil_img):
|
|
35 |
cleaned = cleaned.replace("kg", "").replace("kgs", "")
|
36 |
cleaned = re.sub(r"[^\d\.]", "", cleaned)
|
37 |
|
38 |
-
# Check for number format like 75.5, 102.3
|
39 |
if re.fullmatch(r"\d{2,4}(\.\d{1,3})?", cleaned):
|
40 |
if conf > best_conf:
|
41 |
best_weight = cleaned
|
42 |
best_conf = conf
|
43 |
|
44 |
-
# If nothing matched, return first numeric string found
|
45 |
if not best_weight:
|
46 |
for item in results:
|
47 |
if len(item) != 2 or not isinstance(item[1], tuple):
|
@@ -56,7 +80,6 @@ def extract_weight_from_image(pil_img):
|
|
56 |
if not best_weight:
|
57 |
return "Not detected", 0.0
|
58 |
|
59 |
-
# Strip leading zeros
|
60 |
if "." in best_weight:
|
61 |
int_part, dec_part = best_weight.split(".")
|
62 |
int_part = int_part.lstrip("0") or "0"
|
|
|
5 |
|
6 |
reader = easyocr.Reader(['en'], gpu=False)
|
7 |
|
8 |
+
def enhance_image(img):
|
9 |
+
# Convert to grayscale
|
10 |
+
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
11 |
+
|
12 |
+
# Apply sharpening kernel
|
13 |
+
kernel = np.array([[0, -1, 0], [-1, 5,-1], [0, -1, 0]])
|
14 |
+
sharp = cv2.filter2D(gray, -1, kernel)
|
15 |
+
|
16 |
+
# Contrast Limited Adaptive Histogram Equalization (CLAHE)
|
17 |
+
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
|
18 |
+
contrast = clahe.apply(sharp)
|
19 |
+
|
20 |
+
# Denoising
|
21 |
+
denoised = cv2.fastNlMeansDenoising(contrast, h=30)
|
22 |
+
|
23 |
+
# Adaptive threshold for very dim images
|
24 |
+
thresh = cv2.adaptiveThreshold(denoised, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
25 |
+
cv2.THRESH_BINARY, 11, 2)
|
26 |
+
|
27 |
+
return thresh
|
28 |
+
|
29 |
def extract_weight_from_image(pil_img):
|
30 |
try:
|
31 |
img = np.array(pil_img)
|
32 |
|
33 |
+
# Resize if too large or too small
|
34 |
max_dim = 1000
|
35 |
height, width = img.shape[:2]
|
36 |
if max(height, width) > max_dim:
|
37 |
scale = max_dim / max(height, width)
|
38 |
img = cv2.resize(img, None, fx=scale, fy=scale, interpolation=cv2.INTER_AREA)
|
39 |
+
elif max(height, width) < 400:
|
40 |
+
scale = 2.5 # Upscale very small images
|
41 |
+
img = cv2.resize(img, None, fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC)
|
42 |
+
|
43 |
+
# Enhance image for OCR
|
44 |
+
preprocessed = enhance_image(img)
|
45 |
|
46 |
+
results = reader.readtext(preprocessed)
|
47 |
|
48 |
best_weight = None
|
49 |
best_conf = 0.0
|
|
|
54 |
text, conf = item[1]
|
55 |
cleaned = text.lower().strip()
|
56 |
|
|
|
57 |
cleaned = cleaned.replace(",", ".")
|
58 |
cleaned = cleaned.replace("o", "0").replace("O", "0")
|
59 |
cleaned = cleaned.replace("s", "5").replace("S", "5")
|
|
|
61 |
cleaned = cleaned.replace("kg", "").replace("kgs", "")
|
62 |
cleaned = re.sub(r"[^\d\.]", "", cleaned)
|
63 |
|
|
|
64 |
if re.fullmatch(r"\d{2,4}(\.\d{1,3})?", cleaned):
|
65 |
if conf > best_conf:
|
66 |
best_weight = cleaned
|
67 |
best_conf = conf
|
68 |
|
|
|
69 |
if not best_weight:
|
70 |
for item in results:
|
71 |
if len(item) != 2 or not isinstance(item[1], tuple):
|
|
|
80 |
if not best_weight:
|
81 |
return "Not detected", 0.0
|
82 |
|
|
|
83 |
if "." in best_weight:
|
84 |
int_part, dec_part = best_weight.split(".")
|
85 |
int_part = int_part.lstrip("0") or "0"
|