import easyocr import numpy as np import cv2 import re reader = easyocr.Reader(['en'], gpu=False) def extract_weight_from_image(pil_img): try: img = np.array(pil_img) # Convert to grayscale gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) # Enhance contrast gray = cv2.equalizeHist(gray) # Resize to enhance small text gray = cv2.resize(gray, None, fx=2, fy=2, interpolation=cv2.INTER_LINEAR) # Add light blur to reduce noise gray = cv2.GaussianBlur(gray, (3, 3), 0) # Invert for LCD screens with dark backgrounds inverted = cv2.bitwise_not(gray) # OCR result = reader.readtext(inverted, detail=0) combined_text = " ".join(result) print("OCR Result:", combined_text) # Try to detect weight pattern like "25kg" or "25.3kg" match = re.search(r"(\d{1,4}(?:\.\d{1,2})?)\s?(kg)", combined_text, re.IGNORECASE) if match: return f"{match.group(1)} kg", 95.0 # Fallback: detect numbers only fallback = re.search(r"\d{1,4}(?:\.\d{1,2})?", combined_text) if fallback: return f"{fallback.group(0)} kg", 75.0 return "No weight detected kg", 0.0 except Exception as e: return f"Error: {str(e)}", 0.0