import pytesseract import numpy as np import cv2 import re import logging from datetime import datetime import os from PIL import Image # Set up logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') # Directory for debug images DEBUG_DIR = "debug_images" os.makedirs(DEBUG_DIR, exist_ok=True) def save_debug_image(img, filename_suffix, prefix=""): """Save image to debug directory with timestamp.""" timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f") filename = os.path.join(DEBUG_DIR, f"{prefix}{timestamp}_{filename_suffix}.png") if isinstance(img, Image.Image): img.save(filename) elif len(img.shape) == 3: cv2.imwrite(filename, cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) else: cv2.imwrite(filename, img) logging.info(f"Saved debug image: {filename}") def estimate_brightness(img): """Estimate image brightness.""" gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) return np.mean(gray) def preprocess_image(img): """Preprocess image for OCR with enhanced contrast and noise reduction.""" gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) brightness = estimate_brightness(img) # Dynamic CLAHE clahe_clip = 5.0 if brightness < 80 else 3.0 clahe = cv2.createCLAHE(clipLimit=clahe_clip, tileGridSize=(8, 8)) enhanced = clahe.apply(gray) save_debug_image(enhanced, "01_preprocess_clahe") # Gaussian blur blurred = cv2.GaussianBlur(enhanced, (3, 3), 0) save_debug_image(blurred, "02_preprocess_blur") # Dynamic thresholding block_size = max(11, min(31, int(img.shape[0] / 15) * 2 + 1)) thresh = cv2.adaptiveThreshold(blurred, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, block_size, 5) # Morphological operations kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3)) thresh = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=1) thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=2) save_debug_image(thresh, "03_preprocess_morph") return thresh, enhanced def correct_rotation(img): """Correct image rotation using edge detection.""" try: gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) edges = cv2.Canny(gray, 50, 150, apertureSize=3) lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=50, minLineLength=30, maxLineGap=10) if lines is not None: angles = [np.arctan2(line[0][3] - line[0][1], line[0][2] - line[0][0]) * 180 / np.pi for line in lines] angle = np.median(angles) if abs(angle) > 1.0: h, w = img.shape[:2] center = (w // 2, h // 2) M = cv2.getRotationMatrix2D(center, angle, 1.0) img = cv2.warpAffine(img, M, (w, h)) save_debug_image(img, "00_rotated_image") logging.info(f"Applied rotation: {angle:.2f} degrees") return img except Exception as e: logging.error(f"Rotation correction failed: {str(e)}") return img def detect_roi(img): """Detect region of interest (display) with multi-scale contour filtering.""" try: save_debug_image(img, "04_original") thresh, enhanced = preprocess_image(img) brightness_map = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) block_sizes = [max(11, min(31, int(img.shape[0] / s) * 2 + 1)) for s in [12, 15, 18]] valid_contours = [] img_area = img.shape[0] * img.shape[1] for block_size in block_sizes: temp_thresh = cv2.adaptiveThreshold(enhanced, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, block_size, 5) kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5)) temp_thresh = cv2.morphologyEx(temp_thresh, cv2.MORPH_CLOSE, kernel, iterations=2) save_debug_image(temp_thresh, f"05_roi_threshold_block{block_size}") contours, _ = cv2.findContours(temp_thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) for c in contours: area = cv2.contourArea(c) x, y, w, h = cv2.boundingRect(c) roi_brightness = np.mean(brightness_map[y:y+h, x:x+w]) aspect_ratio = w / h if (400 < area < (img_area * 0.6) and 0.5 <= aspect_ratio <= 8.0 and w > 70 and h > 30 and roi_brightness > 50): valid_contours.append((c, area * roi_brightness)) logging.debug(f"Contour (block {block_size}): Area={area}, Aspect={aspect_ratio:.2f}, Brightness={roi_brightness:.2f}") if valid_contours: contour, _ = max(valid_contours, key=lambda x: x[1]) x, y, w, h = cv2.boundingRect(contour) padding = max(20, min(60, int(min(w, h) * 0.4))) x, y = max(0, x - padding), max(0, y - padding) w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y) roi_img = img[y:y+h, x:x+w] save_debug_image(roi_img, "06_detected_roi") logging.info(f"Detected ROI: ({x}, {y}, {w}, {h})") return roi_img, (x, y, w, h) logging.info("No ROI found, using full image.") save_debug_image(img, "06_no_roi_fallback") return img, None except Exception as e: logging.error(f"ROI detection failed: {str(e)}") save_debug_image(img, "06_roi_error_fallback") return img, None def detect_segments(digit_img, brightness): """Detect seven-segment digits with adaptive thresholds.""" try: h, w = digit_img.shape if h < 15 or w < 8: logging.debug("Digit image too small for segment detection.") return None segment_threshold = 0.25 if brightness < 80 else 0.35 segments = { 'top': (int(w*0.1), int(w*0.9), 0, int(h*0.25)), 'middle': (int(w*0.1), int(w*0.9), int(h*0.45), int(h*0.55)), 'bottom': (int(w*0.1), int(w*0.9), int(h*0.75), h), 'left_top': (0, int(w*0.3), int(h*0.1), int(h*0.5)), 'left_bottom': (0, int(w*0.3), int(h*0.5), int(h*0.9)), 'right_top': (int(w*0.7), w, int(h*0.1), int(h*0.5)), 'right_bottom': (int(w*0.7), w, int(h*0.5), int(h*0.9)) } segment_presence = {} for name, (x1, x2, y1, y2) in segments.items(): x1, y1 = max(0, x1), max(0, y1) x2, y2 = min(w, x2), min(h, y2) region = digit_img[y1:y2, x1:x2] if region.size == 0: segment_presence[name] = False continue pixel_count = np.sum(region == 255) total_pixels = region.size segment_presence[name] = pixel_count / total_pixels > segment_threshold logging.debug(f"Segment {name}: {pixel_count}/{total_pixels} = {pixel_count/total_pixels:.2f}") digit_patterns = { '0': ('top', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'), '1': ('right_top', 'right_bottom'), '2': ('top', 'middle', 'bottom', 'left_bottom', 'right_top'), '3': ('top', 'middle', 'bottom', 'right_top', 'right_bottom'), '4': ('middle', 'left_top', 'right_top', 'right_bottom'), '5': ('top', 'middle', 'bottom', 'left_top', 'right_bottom'), '6': ('top', 'middle', 'bottom', 'left_top', 'left_bottom', 'right_bottom'), '7': ('top', 'right_top', 'right_bottom'), '8': ('top', 'middle', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'), '9': ('top', 'middle', 'bottom', 'left_top', 'right_top', 'right_bottom') } best_match, best_score = None, -1 for digit, pattern in digit_patterns.items(): matches = sum(1 for segment in pattern if segment_presence.get(segment, False)) non_matches = sum(1 for segment in segment_presence if segment not in pattern and segment_presence[segment]) score = matches - 0.15 * non_matches if matches >= len(pattern) * 0.65: score += 1.2 if score > best_score: best_score = score best_match = digit logging.debug(f"Segment detection: {segment_presence}, Digit: {best_match}, Score: {best_score:.2f}") return best_match except Exception as e: logging.error(f"Segment detection failed: {str(e)}") return None def perform_ocr(img, roi_bbox): """Perform OCR with Tesseract and seven-segment fallback.""" try: thresh, enhanced = preprocess_image(img) brightness = estimate_brightness(img) pil_img = Image.fromarray(enhanced) save_debug_image(pil_img, "07_ocr_input") # Tesseract OCR with numeric config custom_config = r'--oem 3 --psm 7 -c tessedit_char_whitelist=0123456789.' text = pytesseract.image_to_string(pil_img, config=custom_config) logging.info(f"Tesseract raw output: {text}") # Clean and validate text text = re.sub(r"[^\d\.]", "", text) if text.count('.') > 1: text = text.replace('.', '', text.count('.') - 1) text = text.strip('.') if text and re.fullmatch(r"^\d*\.?\d*$", text): text = text.lstrip('0') or '0' confidence = 95.0 if len(text.replace('.', '')) >= 2 else 90.0 logging.info(f"Validated Tesseract text: {text}, Confidence: {confidence:.2f}%") return text, confidence # Fallback to seven-segment detection logging.info("Tesseract failed, using seven-segment detection.") contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) digits_info = [] for c in contours: x, y, w, h = cv2.boundingRect(c) if w > 10 and h > 15 and 0.2 <= w/h <= 1.5: digits_info.append((x, x+w, y, y+h)) if digits_info: digits_info.sort(key=lambda x: x[0]) recognized_text = "" for idx, (x_min, x_max, y_min, y_max) in enumerate(digits_info): x_min, y_min = max(0, x_min), max(0, y_min) x_max, y_max = min(thresh.shape[1], x_max), min(thresh.shape[0], y_max) if x_max <= x_min or y_max <= y_min: continue digit_crop = thresh[y_min:y_max, x_min:x_max] save_debug_image(digit_crop, f"08_digit_crop_{idx}") segment_digit = detect_segments(digit_crop, brightness) if segment_digit: recognized_text += segment_digit elif idx < len(digits_info) - 1 and (digits_info[idx+1][0] - x_max) < 10: recognized_text += '.' # Assume decimal point for close digits text = re.sub(r"[^\d\.]", "", recognized_text) if text.count('.') > 1: text = text.replace('.', '', text.count('.') - 1) text = text.strip('.') if text and re.fullmatch(r"^\d*\.?\d*$", text): text = text.lstrip('0') or '0' confidence = 90.0 logging.info(f"Validated segment text: {text}, Confidence: {confidence:.2f}%") return text, confidence logging.info("No valid digits detected.") return None, 0.0 except Exception as e: logging.error(f"OCR failed: {str(e)}") return None, 0.0 def extract_weight_from_image(pil_img): """Extract weight from a digital scale image.""" try: img = np.array(pil_img) img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) save_debug_image(img, "00_input_image") img = correct_rotation(img) brightness = estimate_brightness(img) conf_threshold = 0.8 if brightness > 100 else 0.6 roi_img, roi_bbox = detect_roi(img) if roi_bbox: conf_threshold *= 1.1 if (roi_bbox[2] * roi_bbox[3]) > (img.shape[0] * img.shape[1] * 0.3) else 1.0 result, confidence = perform_ocr(roi_img, roi_bbox) if result and confidence >= conf_threshold * 100: try: weight = float(result) if 0.01 <= weight <= 1000: logging.info(f"Detected weight: {result} kg, Confidence: {confidence:.2f}%") return result, confidence logging.warning(f"Weight {result} out of range.") except ValueError: logging.warning(f"Invalid weight format: {result}") logging.info("Primary OCR failed, using full image fallback.") result, confidence = perform_ocr(img, None) if result and confidence >= conf_threshold * 0.9 * 100: try: weight = float(result) if 0.01 <= weight <= 1000: logging.info(f"Full image weight: {result} kg, Confidence: {confidence:.2f}%") return result, confidence logging.warning(f"Full image weight {result} out of range.") except ValueError: logging.warning(f"Invalid full image weight format: {result}") logging.info("No valid weight detected.") return "Not detected", 0.0 except Exception as e: logging.error(f"Weight extraction failed: {str(e)}") return "Not detected", 0.0