import easyocr import numpy as np import cv2 import re reader = easyocr.Reader(['en'], gpu=False) def enhance_image(img): gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # CLAHE (adaptive histogram equalization for better contrast) clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8)) contrast = clahe.apply(gray) # Sharpen image kernel = np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]]) sharpened = cv2.filter2D(contrast, -1, kernel) # Resize if very small h, w = sharpened.shape if max(h, w) < 500: sharpened = cv2.resize(sharpened, None, fx=2, fy=2, interpolation=cv2.INTER_CUBIC) return sharpened def extract_weight_from_image(pil_img): try: img = np.array(pil_img) img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) # convert from PIL to OpenCV BGR # Preprocess image processed = enhance_image(img) results = reader.readtext(processed) best_weight = None best_conf = 0.0 for (bbox, text, conf) in results: original_text = text text = text.lower().strip() # Fix common OCR errors text = text.replace(",", ".") text = text.replace("o", "0").replace("O", "0") text = text.replace("s", "5").replace("S", "5") text = text.replace("g", "9").replace("G", "6") text = text.replace("kgs", "").replace("kg", "") text = re.sub(r"[^\d\.]", "", text) if re.fullmatch(r"\d{1,4}(\.\d{1,3})?", text): if conf > best_conf: best_weight = text best_conf = conf if not best_weight: return "Not detected", 0.0 # Format output if "." in best_weight: int_part, dec_part = best_weight.split(".") int_part = int_part.lstrip("0") or "0" best_weight = f"{int_part}.{dec_part}" else: best_weight = best_weight.lstrip("0") or "0" return best_weight, round(best_conf * 100, 2) except Exception as e: return f"Error: {str(e)}", 0.0