import easyocr import numpy as np import cv2 import re import logging from datetime import datetime import os # Set up logging for debugging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') # Initialize EasyOCR easyocr_reader = easyocr.Reader(['en'], gpu=False) # Directory for debug images DEBUG_DIR = "debug_images" os.makedirs(DEBUG_DIR, exist_ok=True) def save_debug_image(img, filename_suffix, prefix=""): """Saves an image to the debug directory with a timestamp.""" timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f") filename = os.path.join(DEBUG_DIR, f"{prefix}{timestamp}_{filename_suffix}.png") if len(img.shape) == 3: # Color image cv2.imwrite(filename, img) else: # Grayscale image cv2.imwrite(filename, img) logging.info(f"Saved debug image: {filename}") def estimate_brightness(img): """Estimate image brightness to detect illuminated displays.""" gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) return np.mean(gray) def preprocess_image(img, scale=1.0, method='clahe'): """Preprocess image for better OCR accuracy.""" if scale != 1.0: img = cv2.resize(img, None, fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC) save_debug_image(img, f"01_preprocess_scaled_{scale}") gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # Gentle denoising denoised = cv2.bilateralFilter(gray, 7, 10, 10) save_debug_image(denoised, "02_preprocess_bilateral") # Enhance contrast if method == 'clahe': clahe = cv2.createCLAHE(clipLimit=3.5, tileGridSize=(8, 8)) enhanced = clahe.apply(denoised) else: # Histogram equalization enhanced = cv2.equalizeHist(denoised) save_debug_image(enhanced, f"03_preprocess_{method}") # Sharpen kernel_sharpening = np.array([[-1, -1, -1], [-1, 9, -1], [-1, -1, -1]]) sharpened = cv2.filter2D(enhanced, -1, kernel_sharpening) save_debug_image(sharpened, "04_preprocess_sharpened") return sharpened def correct_rotation(img): """Correct image rotation using Hough Transform.""" try: edges = cv2.Canny(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY), 50, 150) lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=50, minLineLength=40, maxLineGap=10) if lines is not None: angles = [np.arctan2(line[0][3] - line[0][1], line[0][2] - line[0][0]) * 180 / np.pi for line in lines] angle = np.median(angles) if abs(angle) > 2: (h, w) = img.shape[:2] center = (w // 2, h // 2) M = cv2.getRotationMatrix2D(center, angle, 1.0) img = cv2.warpAffine(img, M, (w, h)) save_debug_image(img, "00_rotated_image") logging.info(f"Applied rotation correction: {angle:.2f} degrees") return img except Exception as e: logging.error(f"Rotation correction failed: {str(e)}") return img def detect_roi(img): """Detect and crop the region of interest (likely the digital display).""" try: save_debug_image(img, "05_original") brightness_map = cv2.GaussianBlur(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY), (15, 15), 0) # Try multiple scales and methods scales = [1.0, 1.5, 0.5] methods = ['clahe', 'hist'] for scale in scales: for method in methods: preprocessed = preprocess_image(img, scale, method) block_size = max(9, min(31, int(img.shape[0] / 25) * 2 + 1)) thresh = cv2.adaptiveThreshold(preprocessed, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, block_size, 3) _, otsu_thresh = cv2.threshold(preprocessed, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU) combined_thresh = cv2.bitwise_and(thresh, otsu_thresh) save_debug_image(combined_thresh, f"06_roi_combined_threshold_scale_{scale}_{method}") # Morphological operations kernel = np.ones((3, 3), np.uint8) dilated = cv2.dilate(combined_thresh, kernel, iterations=2) eroded = cv2.erode(dilated, kernel, iterations=1) save_debug_image(eroded, f"07_roi_morphological_scale_{scale}_{method}") contours, _ = cv2.findContours(eroded, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) if contours: img_area = img.shape[0] * img.shape[1] valid_contours = [] for c in contours: area = cv2.contourArea(c) x, y, w, h = cv2.boundingRect(c) roi_brightness = np.mean(brightness_map[y:y+h, x:x+w] if scale == 1.0 else cv2.resize(brightness_map, (img.shape[1], img.shape[0]))) aspect_ratio = w / h if (100 < area < (img_area * 0.95) and 0.3 <= aspect_ratio <= 20.0 and w > 40 and h > 15 and roi_brightness > 50): valid_contours.append((c, roi_brightness)) logging.debug(f"Contour: Scale={scale}, Method={method}, Area={area}, Aspect={aspect_ratio:.2f}, Brightness={roi_brightness:.2f}") if valid_contours: contour, _ = max(valid_contours, key=lambda x: x[1]) x, y, w, h = cv2.boundingRect(contour) if scale != 1.0: x, y, w, h = [int(v / scale) for v in (x, y, w, h)] padding = 150 x, y = max(0, x - padding), max(0, y - padding) w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y) roi_img = img[y:y+h, x:x+w] save_debug_image(roi_img, f"08_detected_roi_scale_{scale}_{method}") logging.info(f"Detected ROI with dimensions: ({x}, {y}, {w}, {h}) at scale {scale}, method {method}") return roi_img, (x, y, w, h) logging.info("No suitable ROI found, attempting fallback criteria.") # Fallback with relaxed criteria preprocessed = preprocess_image(img, method='clahe') thresh = cv2.adaptiveThreshold(preprocessed, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, block_size, 5) save_debug_image(thresh, "06_roi_fallback_threshold") contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) valid_contours = [c for c in contours if 50 < cv2.contourArea(c) < (img.shape[0] * img.shape[1] * 0.95) and 0.2 <= cv2.boundingRect(c)[2]/cv2.boundingRect(c)[3] <= 25.0] if valid_contours: contour = max(valid_contours, key=cv2.contourArea) x, y, w, h = cv2.boundingRect(contour) padding = 150 x, y = max(0, x - padding), max(0, y - padding) w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y) roi_img = img[y:y+h, x:x+w] save_debug_image(roi_img, "08_detected_roi_fallback") logging.info(f"Detected fallback ROI with dimensions: ({x}, {y}, {w}, {h})") return roi_img, (x, y, w, h) logging.info("No suitable ROI found, returning original image.") save_debug_image(img, "08_no_roi_original_fallback") return img, None except Exception as e: logging.error(f"ROI detection failed: {str(e)}") save_debug_image(img, "08_roi_detection_error_fallback") return img, None def detect_segments(digit_img, brightness): """Detect seven-segment patterns in a digit image.""" h, w = digit_img.shape if h < 8 or w < 6: return None segments = { 'top': (int(w*0.1), int(w*0.9), 0, int(h*0.25)), 'middle': (int(w*0.1), int(w*0.9), int(h*0.45), int(h*0.55)), 'bottom': (int(w*0.1), int(w*0.9), int(h*0.75), h), 'left_top': (0, int(w*0.3), int(h*0.1), int(h*0.5)), 'left_bottom': (0, int(w*0.3), int(h*0.5), int(h*0.9)), 'right_top': (int(w*0.7), w, int(h*0.1), int(h*0.5)), 'right_bottom': (int(w*0.7), w, int(h*0.5), int(h*0.9)) } segment_presence = {} for name, (x1, x2, y1, y2) in segments.items(): x1, y1 = max(0, x1), max(0, y1) x2, y2 = min(w, x2), min(h, y2) region = digit_img[y1:y2, x1:x2] if region.size == 0: segment_presence[name] = False continue pixel_count = np.sum(region == 255) total_pixels = region.size segment_presence[name] = pixel_count / total_pixels > (0.15 if brightness < 80 else 0.35) digit_patterns = { '0': ('top', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'), '1': ('right_top', 'right_bottom'), '2': ('top', 'middle', 'bottom', 'left_bottom', 'right_top'), '3': ('top', 'middle', 'bottom', 'right_top', 'right_bottom'), '4': ('middle', 'left_top', 'right_top', 'right_bottom'), '5': ('top', 'middle', 'bottom', 'left_top', 'right_bottom'), '6': ('top', 'middle', 'bottom', 'left_top', 'left_bottom', 'right_bottom'), '7': ('top', 'right_top', 'right_bottom'), '8': ('top', 'middle', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'), '9': ('top', 'middle', 'bottom', 'left_top', 'right_top', 'right_bottom') } best_match = None max_score = -1 for digit, pattern in digit_patterns.items(): matches = sum(1 for segment in pattern if segment_presence.get(segment, False)) non_matches_penalty = sum(1 for segment in segment_presence if segment not in pattern and segment_presence[segment]) score = matches - 0.15 * non_matches_penalty if matches >= len(pattern) * 0.65: score += 1.0 if score > max_score: max_score = score best_match = digit logging.debug(f"Segment presence: {segment_presence}, Detected digit: {best_match}") return best_match def custom_seven_segment_ocr(img, roi_bbox): """Perform custom OCR for seven-segment displays.""" try: preprocessed = preprocess_image(img, method='clahe') brightness = estimate_brightness(img) thresh_value = 60 if brightness < 80 else 0 _, thresh = cv2.threshold(preprocessed, thresh_value, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU) save_debug_image(thresh, "09_roi_thresh_for_digits") # Morphological operations kernel = np.ones((3, 3), np.uint8) thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=2) save_debug_image(thresh, "10_morph_closed") batch_size = max(4, min(16, int(img.shape[0] * img.shape[1] / 100000))) results = easyocr_reader.readtext(thresh, detail=1, paragraph=False, contrast_ths=0.1, adjust_contrast=1.3, text_threshold=0.3, mag_ratio=6.0, allowlist='0123456789.', batch_size=batch_size, y_ths=0.4) logging.info(f"EasyOCR results (seven-segment): {results}") if not results: logging.info("EasyOCR found no digits in seven-segment OCR.") return None digits_info = [] for (bbox, text, conf) in results: (x1, y1), (x2, y2), (x3, y3), (x4, y4) = bbox h_bbox = max(y1, y2, y3, y4) - min(y1, y2, y3, y4) if (text.isdigit() or text == '.') and h_bbox > 5: x_min, x_max = int(min(x1, x4)), int(max(x2, x3)) y_min, y_max = int(min(y1, y2)), int(max(y3, y4)) digits_info.append((x_min, x_max, y_min, y_max, text, conf)) digits_info.sort(key=lambda x: x[0]) recognized_text = "" for idx, (x_min, x_max, y_min, y_max, easyocr_char, easyocr_conf) in enumerate(digits_info): x_min, y_min = max(0, x_min), max(0, y_min) x_max, y_max = min(thresh.shape[1], x_max), min(thresh.shape[0], y_max) if x_max <= x_min or y_max <= y_min: continue digit_img_crop = thresh[y_min:y_max, x_min:x_max] save_debug_image(digit_img_crop, f"11_digit_crop_{idx}_{easyocr_char}") if easyocr_conf > 0.85 or easyocr_char == '.': recognized_text += easyocr_char else: digit_from_segments = detect_segments(digit_img_crop, brightness) recognized_text += digit_from_segments if digit_from_segments else easyocr_char logging.info(f"Before validation, recognized_text: {recognized_text}") text = re.sub(r"[^\d\.]", "", recognized_text) if text.count('.') > 1: text = text.replace('.', '', text.count('.') - 1) if text and re.fullmatch(r"^\d*\.?\d*$", text): text = text.strip('.') if text == '': return None return text.lstrip('0') or '0' logging.info(f"Custom OCR text '{recognized_text}' failed validation.") return None except Exception as e: logging.error(f"Custom seven-segment OCR failed: {str(e)}") return None def extract_weight_from_image(pil_img): """Extract weight from a PIL image of a digital scale display.""" try: img = np.array(pil_img) img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) save_debug_image(img, "00_input_image") # Apply rotation correction img = correct_rotation(img) brightness = estimate_brightness(img) conf_threshold = 0.65 if brightness > 150 else (0.45 if brightness > 80 else 0.25) roi_img, roi_bbox = detect_roi(img) if roi_bbox: roi_area = roi_bbox[2] * roi_bbox[3] conf_threshold *= 1.1 if roi_area > (img.shape[0] * img.shape[1] * 0.5) else 1.0 custom_result = custom_seven_segment_ocr(roi_img, roi_bbox) if custom_result and custom_result != '0': try: weight = float(custom_result) if 0.0001 <= weight <= 5000: logging.info(f"Custom OCR result: {custom_result}, Confidence: 95.0%") return custom_result, 95.0 else: logging.warning(f"Custom OCR result {custom_result} outside typical weight range.") except ValueError: logging.warning(f"Custom OCR result '{custom_result}' is not a valid number.") logging.info("Custom OCR failed or invalid, falling back to enhanced EasyOCR.") preprocessed_roi = preprocess_image(roi_img, method='hist') block_size = max(9, min(31, int(roi_img.shape[0] / 25) * 2 + 1)) final_roi = cv2.adaptiveThreshold(preprocessed_roi, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, block_size, 5) save_debug_image(final_roi, "12_fallback_adaptive_thresh") batch_size = max(4, min(16, int(roi_img.shape[0] * roi_img.shape[1] / 100000))) ocr_passes = [ {'contrast_ths': 0.2, 'text_threshold': 0.3, 'mag_ratio': 6.0, 'y_ths': 0.4, 'label': 'first'}, {'contrast_ths': 0.1, 'text_threshold': 0.2, 'mag_ratio': 7.0, 'y_ths': 0.5, 'label': 'second'}, {'contrast_ths': 0.05, 'text_threshold': 0.1, 'mag_ratio': 8.0, 'y_ths': 0.6, 'label': 'third'} ] candidates = [] for ocr_pass in ocr_passes: results = easyocr_reader.readtext(final_roi, detail=1, paragraph=False, contrast_ths=ocr_pass['contrast_ths'], adjust_contrast=1.4, text_threshold=ocr_pass['text_threshold'], mag_ratio=ocr_pass['mag_ratio'], allowlist='0123456789. kglb', batch_size=batch_size, y_ths=ocr_pass['y_ths']) logging.info(f"EasyOCR results ({ocr_pass['label']} pass): {results}") save_debug_image(final_roi, f"12_fallback_adaptive_thresh_{ocr_pass['label']}_pass") unit = None for (bbox, text, conf) in results: if 'kg' in text.lower(): unit = 'kg' continue elif 'g' in text.lower(): unit = 'g' continue elif 'lb' in text.lower(): unit = 'lb' continue text = re.sub(r"[^\d\.]", "", text) if text.count('.') > 1: text = text.replace('.', '', text.count('.') - 1) text = text.strip('.') if re.fullmatch(r"^\d*\.?\d*$", text): try: weight = float(text) if unit == 'g': weight /= 1000 elif unit == 'lb': weight *= 0.453592 range_score = 1.5 if 0.0001 <= weight <= 5000 else 0.6 digit_count = len(text.replace('.', '')) digit_score = 1.4 if 1 <= digit_count <= 8 else 0.7 score = conf * range_score * digit_score if roi_bbox: (x_roi, y_roi, w_roi, h_roi) = roi_bbox roi_area = w_roi * h_roi x_min, y_min = int(min(b[0] for b in bbox)), int(min(b[1] for b in bbox)) x_max, y_max = int(max(b[0] for b in bbox)), int(max(b[1] for b in bbox)) bbox_area = (x_max - x_min) * (y_max - y_min) if roi_area > 0 and bbox_area / roi_area < 0.02: score *= 0.4 candidates.append((text, conf, score, unit)) logging.info(f"Candidate EasyOCR weight: '{text}', Unit: {unit or 'none'}, Conf: {conf}, Score: {score}") except ValueError: logging.warning(f"Could not convert '{text}' to float during EasyOCR fallback.") # Fallback to full image if no candidates if not candidates: logging.info("No candidates from ROI, trying full image.") preprocessed_full = preprocess_image(img, method='hist') final_full = cv2.adaptiveThreshold(preprocessed_full, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, block_size, 5) save_debug_image(final_full, "12_fallback_full_image") results = easyocr_reader.readtext(final_full, detail=1, paragraph=False, contrast_ths=0.1, adjust_contrast=1.5, text_threshold=0.2, mag_ratio=7.0, allowlist='0123456789. kglb', batch_size=batch_size, y_ths=0.5) logging.info(f"EasyOCR results (full image): {results}") unit = None for (bbox, text, conf) in results: if 'kg' in text.lower(): unit = 'kg' continue elif 'g' in text.lower(): unit = 'g' continue elif 'lb' in text.lower(): unit = 'lb' continue text = re.sub(r"[^\d\.]", "", text) if text.count('.') > 1: text = text.replace('.', '', text.count('.') - 1) text = text.strip('.') if re.fullmatch(r"^\d*\.?\d*$", text): try: weight = float(text) if unit == 'g': weight /= 1000 elif unit == 'lb': weight *= 0.453592 range_score = 1.2 if 0.0001 <= weight <= 5000 else 0.5 digit_count = len(text.replace('.', '')) digit_score = 1.2 if 1 <= digit_count <= 8 else 0.6 score = conf * range_score * digit_score * 0.8 # Penalty for full image candidates.append((text, conf, score, unit)) logging.info(f"Candidate EasyOCR weight (full image): '{text}', Unit: {unit or 'none'}, Conf: {conf}, Score: {score}") except ValueError: logging.warning(f"Could not convert '{text}' to float during full image fallback.") if not candidates: logging.info("No valid weight detected after all attempts.") return "Not detected", 0.0 # Select best candidate best_weight, best_conf, best_score, best_unit = max(candidates, key=lambda x: x[2]) # Format the weight if "." in best_weight: int_part, dec_part = best_weight.split(".") int_part = int_part.lstrip("0") or "0" dec_part = dec_part.rstrip('0') best_weight = f"{int_part}.{dec_part}" if dec_part else int_part else: best_weight = best_weight.lstrip('0') or "0" try: final_weight = float(best_weight) if final_weight < 0.0001 or final_weight > 5000: best_conf *= 0.5 elif final_weight == 0 and best_conf < 0.95: best_conf *= 0.6 # Penalize zero weights except ValueError: pass logging.info(f"Final detected weight: {best_weight} kg, Confidence: {round(best_conf * 100, 2)}%, Unit: {best_unit or 'none'}") return best_weight, round(best_conf * 100, 2) except Exception as e: logging.error(f"Weight extraction failed unexpectedly: {str(e)}") return "Not detected", 0.0