import easyocr import numpy as np import cv2 import re reader = easyocr.Reader(['en'], gpu=False) def extract_weight_from_image(pil_img): try: img = np.array(pil_img) # Grayscale and resize gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) gray = cv2.resize(gray, None, fx=2, fy=2, interpolation=cv2.INTER_LINEAR) # Enhance contrast gray = cv2.equalizeHist(gray) blurred = cv2.GaussianBlur(gray, (3, 3), 0) inverted = cv2.bitwise_not(blurred) # OCR result = reader.readtext(inverted, detail=0) combined_text = " ".join(result) print("OCR Text:", combined_text) # Match weight in KG (like 25kg or 25.00 kg) match = re.search(r'(\d{1,4}(?:\.\d{1,2})?)\s?(kg)', combined_text, re.IGNORECASE) if match: return f"{match.group(1)} kg", 95.0 else: # Fallback to just number fallback = re.search(r'\d{1,4}(?:\.\d{1,2})?', combined_text) if fallback: return f"{fallback.group(0)} kg", 90.0 return "No weight detected kg", 0.0 except Exception as e: return f"Error: {str(e)}", 0.0