import easyocr import numpy as np import re import cv2 reader = easyocr.Reader(['en'], gpu=False) def extract_weight_from_image(pil_image): try: image = np.array(pil_image) # Grayscale conversion gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) # Resize to make digits clearer resized = cv2.resize(gray, None, fx=3, fy=3, interpolation=cv2.INTER_CUBIC) # Bilateral Filter to reduce noise filtered = cv2.bilateralFilter(resized, 11, 17, 17) # Adaptive Thresholding thresh = cv2.adaptiveThreshold(filtered, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2) # OCR result = reader.readtext(thresh, detail=0) text = " ".join(result) print("OCR Output:", text) # Extract weight like 25.52 or 123 match = re.search(r'\d{1,4}(\.\d{1,2})?', text) if match: return match.group(), 95.0 else: return "No weight detected", 0.0 except Exception as e: return f"Error: {str(e)}", 0.0