import easyocr import numpy as np import cv2 import re import logging from datetime import datetime import os # Set up logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') # Initialize EasyOCR easyocr_reader = easyocr.Reader(['en'], gpu=False) # Directory for debug images DEBUG_DIR = "debug_images" os.makedirs(DEBUG_DIR, exist_ok=True) def save_debug_image(img, filename_suffix, prefix=""): """Save image to debug directory with timestamp.""" timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f") filename = os.path.join(DEBUG_DIR, f"{prefix}{timestamp}_{filename_suffix}.png") if len(img.shape) == 3: cv2.imwrite(filename, cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) else: cv2.imwrite(filename, img) logging.info(f"Saved debug image: {filename}") def estimate_brightness(img): """Estimate image brightness.""" gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) return np.mean(gray) def preprocess_image(img): """Preprocess image for OCR with enhanced contrast and noise reduction.""" gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # Apply Gaussian blur to reduce noise blurred = cv2.GaussianBlur(gray, (5, 5), 0) save_debug_image(blurred, "01_preprocess_blur") # Use adaptive histogram equalization for better contrast clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8, 8)) enhanced = clahe.apply(blurred) save_debug_image(enhanced, "02_preprocess_clahe") # Morphological operations to enhance digits kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3)) morphed = cv2.morphologyEx(enhanced, cv2.MORPH_CLOSE, kernel) save_debug_image(morphed, "03_preprocess_morph") return morphed def correct_rotation(img): """Correct image rotation using edge detection.""" try: gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) blurred = cv2.GaussianBlur(gray, (5, 5), 0) edges = cv2.Canny(blurred, 50, 150) lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=50, minLineLength=30, maxLineGap=10) if lines is not None: angles = [np.arctan2(line[0][3] - line[0][1], line[0][2] - line[0][0]) * 180 / np.pi for line in lines] angle = np.median(angles) if abs(angle) > 1.5: h, w = img.shape[:2] center = (w // 2, h // 2) M = cv2.getRotationMatrix2D(center, angle, 1.0) img = cv2.warpAffine(img, M, (w, h)) save_debug_image(img, "00_rotated_image") logging.info(f"Applied rotation: {angle:.2f} degrees") return img except Exception as e: logging.error(f"Rotation correction failed: {str(e)}") return img def detect_roi(img): """Detect region of interest (display) with refined contour filtering.""" try: save_debug_image(img, "04_original") preprocessed = preprocess_image(img) brightness_map = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # Dynamic block size based on image dimensions block_size = max(11, min(31, int(img.shape[0] / 20) * 2 + 1)) thresh = cv2.adaptiveThreshold(preprocessed, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, block_size, 2) save_debug_image(thresh, "05_roi_threshold") # Morphological operations to connect digit segments kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5)) thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel) save_debug_image(thresh, "06_roi_morph") contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) if contours: img_area = img.shape[0] * img.shape[1] valid_contours = [] for c in contours: area = cv2.contourArea(c) x, y, w, h = cv2.boundingRect(c) roi_brightness = np.mean(brightness_map[y:y+h, x:x+w]) aspect_ratio = w / h # Relaxed constraints for ROI detection if (100 < area < (img_area * 0.9) and 0.3 <= aspect_ratio <= 20.0 and w > 40 and h > 15 and roi_brightness > 20): valid_contours.append((c, area * roi_brightness)) logging.debug(f"Contour: Area={area}, Aspect={aspect_ratio:.2f}, Brightness={roi_brightness:.2f}") if valid_contours: contour, _ = max(valid_contours, key=lambda x: x[1]) x, y, w, h = cv2.boundingRect(contour) # Dynamic padding based on ROI size padding = max(10, min(50, int(min(w, h) * 0.2))) x, y = max(0, x - padding), max(0, y - padding) w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y) roi_img = img[y:y+h, x:x+w] save_debug_image(roi_img, "07_detected_roi") logging.info(f"Detected ROI: ({x}, {y}, {w}, {h})") return roi_img, (x, y, w, h) logging.info("No ROI found, using full image.") save_debug_image(img, "07_no_roi_fallback") return img, None except Exception as e: logging.error(f"ROI detection failed: {str(e)}") save_debug_image(img, "07_roi_error_fallback") return img, None def perform_ocr(img, roi_bbox): """Perform OCR optimized for digital displays.""" try: preprocessed = preprocess_image(img) brightness = estimate_brightness(img) # Dynamic thresholding based on brightness thresh_value = 0 if brightness < 50 else (127 if brightness < 100 else 200) _, thresh = cv2.threshold(preprocessed, thresh_value, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU) save_debug_image(thresh, "08_ocr_threshold") # Morphological operations to clean up digits kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3)) thresh = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel) save_debug_image(thresh, "09_ocr_morph") # Optimized EasyOCR parameters for seven-segment displays results = easyocr_reader.readtext(thresh, detail=1, paragraph=False, contrast_ths=0.1, adjust_contrast=1.5, text_threshold=0.2, mag_ratio=3.0, allowlist='0123456789.', batch_size=1, y_ths=0.2) logging.info(f"EasyOCR results: {results}") if not results: logging.info("No text detected, trying fallback parameters.") results = easyocr_reader.readtext(thresh, detail=1, paragraph=False, contrast_ths=0.05, adjust_contrast=2.0, text_threshold=0.1, mag_ratio=4.0, allowlist='0123456789.', batch_size=1, y_ths=0.2) save_debug_image(thresh, "09_fallback_threshold") if not results: logging.info("No digits found.") return None, 0.0 digits_info = [] for (bbox, text, conf) in results: (x1, y1), (x2, y2), (x3, y3), (x4, y4) = bbox h_bbox = max(y1, y2, y3, y4) - min(y1, y2, y3, y4) if (text.isdigit() or text == '.') and h_bbox > 5 and conf > 0.1: x_min, x_max = int(min(x1, x4)), int(max(x2, x3)) y_min, y_max = int(min(y1, y2)), int(max(y3, y4)) digits_info.append((x_min, x_max, y_min, y_max, text, conf)) if not digits_info: logging.info("No valid digits after filtering.") return None, 0.0 digits_info.sort(key=lambda x: x[0]) recognized_text = "" total_conf = 0.0 conf_count = 0 for _, _, _, _, char, conf in digits_info: recognized_text += char total_conf += conf conf_count += 1 avg_conf = total_conf / conf_count if conf_count > 0 else 0.0 logging.info(f"Recognized text: {recognized_text}, Average confidence: {avg_conf:.2f}") # Validate and clean the recognized text text = re.sub(r"[^\d\.]", "", recognized_text) if text.count('.') > 1: text = text.replace('.', '', text.count('.') - 1) text = text.strip('.') if text and re.fullmatch(r"^\d*\.?\d*$", text): text = text.lstrip('0') or '0' if text == '0' and avg_conf < 0.9: avg_conf *= 0.7 return text, avg_conf * 100 logging.info(f"Text '{recognized_text}' failed validation.") return None, 0.0 except Exception as e: logging.error(f"OCR failed: {str(e)}") return None, 0.0 def extract_weight_from_image(pil_img): """Extract weight from a digital scale image.""" try: img = np.array(pil_img) img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) save_debug_image(img, "00_input_image") img = correct_rotation(img) brightness = estimate_brightness(img) conf_threshold = 0.5 if brightness > 120 else (0.3 if brightness > 60 else 0.2) roi_img, roi_bbox = detect_roi(img) if roi_bbox: conf_threshold *= 1.1 if (roi_bbox[2] * roi_bbox[3]) > (img.shape[0] * img.shape[1] * 0.4) else 1.0 result, confidence = perform_ocr(roi_img, roi_bbox) if result and confidence >= conf_threshold * 100: try: weight = float(result) if 0.00001 <= weight <= 10000: logging.info(f"Detected weight: {result} kg, Confidence: {confidence:.2f}%") return result, confidence logging.warning(f"Weight {result} out of range.") except ValueError: logging.warning(f"Invalid weight format: {result}") logging.info("Primary OCR failed, using full image fallback.") result, confidence = perform_ocr(img, None) if result and confidence >= conf_threshold * 0.8 * 100: try: weight = float(result) if 0.00001 <= weight <= 10000: logging.info(f"Full image weight: {result} kg, Confidence: {confidence:.2f}%") return result, confidence logging.warning(f"Full image weight {result} out of range.") except ValueError: logging.warning(f"Invalid full image weight format: {result}") logging.info("No valid weight detected.") return "Not detected", 0.0 except Exception as e: logging.error(f"Weight extraction failed: {str(e)}") return "Not detected", 0.0