import easyocr import numpy as np import cv2 import re import logging from datetime import datetime import os # Set up logging for debugging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') # Initialize EasyOCR easyocr_reader = easyocr.Reader(['en'], gpu=False) # Directory for debug images DEBUG_DIR = "debug_images" os.makedirs(DEBUG_DIR, exist_ok=True) def save_debug_image(img, filename_suffix, prefix=""): """Saves an image to the debug directory with a timestamp.""" timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f") filename = os.path.join(DEBUG_DIR, f"{prefix}{timestamp}_{filename_suffix}.png") if len(img.shape) == 3: # Color image cv2.imwrite(filename, img) else: # Grayscale image cv2.imwrite(filename, img) logging.info(f"Saved debug image: {filename}") def estimate_brightness(img): """Estimate image brightness to detect illuminated displays""" gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) return np.mean(gray) def detect_roi(img): """Detect and crop the region of interest (likely the digital display)""" try: save_debug_image(img, "01_original") gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) save_debug_image(gray, "02_grayscale") # Use adaptive thresholding for better robustness thresh = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2) save_debug_image(thresh, "03_roi_adaptive_threshold") kernel = np.ones((7, 7), np.uint8) # Smaller kernel dilated = cv2.dilate(thresh, kernel, iterations=3) # Fewer iterations save_debug_image(dilated, "04_roi_dilated") contours, _ = cv2.findContours(dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) if contours: img_area = img.shape[0] * img.shape[1] valid_contours = [] for c in contours: area = cv2.contourArea(c) # Relaxed area and aspect ratio filters if 500 < area < (img_area * 0.95): x, y, w, h = cv2.boundingRect(c) aspect_ratio = w / h if 1.5 <= aspect_ratio <= 6.0 and w > 80 and h > 40: valid_contours.append(c) if valid_contours: for contour in sorted(valid_contours, key=cv2.contourArea, reverse=True): x, y, w, h = cv2.boundingRect(contour) padding = 60 # Increased padding x, y = max(0, x - padding), max(0, y - padding) w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y) roi_img = img[y:y+h, x:x+w] save_debug_image(roi_img, "05_detected_roi") logging.info(f"Detected ROI with dimensions: ({x}, {y}, {w}, {h})") return roi_img, (x, y, w, h) logging.info("No suitable ROI found, returning original image.") save_debug_image(img, "05_no_roi_original_fallback") return img, None except Exception as e: logging.error(f"ROI detection failed: {str(e)}") save_debug_image(img, "05_roi_detection_error_fallback") return img, None def detect_segments(digit_img): """Detect seven-segment patterns in a digit image""" h, w = digit_img.shape if h < 15 or w < 10: return None segments = { 'top': (int(w*0.15), int(w*0.85), 0, int(h*0.2)), 'middle': (int(w*0.15), int(w*0.85), int(h*0.4), int(h*0.6)), 'bottom': (int(w*0.15), int(w*0.85), int(h*0.8), h), 'left_top': (0, int(w*0.25), int(h*0.05), int(h*0.5)), 'left_bottom': (0, int(w*0.25), int(h*0.5), int(h*0.95)), 'right_top': (int(w*0.75), w, int(h*0.05), int(h*0.5)), 'right_bottom': (int(w*0.75), w, int(h*0.5), int(h*0.95)) } segment_presence = {} for name, (x1, x2, y1, y2) in segments.items(): x1, y1 = max(0, x1), max(0, y1) x2, y2 = min(w, x2), min(h, y2) region = digit_img[y1:y2, x1:x2] if region.size == 0: segment_presence[name] = False continue pixel_count = np.sum(region == 255) total_pixels = region.size segment_presence[name] = pixel_count / total_pixels > 0.45 # Lowered threshold digit_patterns = { '0': ('top', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'), '1': ('right_top', 'right_bottom'), '2': ('top', 'middle', 'bottom', 'left_bottom', 'right_top'), '3': ('top', 'middle', 'bottom', 'right_top', 'right_bottom'), '4': ('middle', 'left_top', 'right_top', 'right_bottom'), '5': ('top', 'middle', 'bottom', 'left_top', 'right_bottom'), '6': ('top', 'middle', 'bottom', 'left_top', 'left_bottom', 'right_bottom'), '7': ('top', 'right_top', 'right_bottom'), '8': ('top', 'middle', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'), '9': ('top', 'middle', 'bottom', 'left_top', 'right_top', 'right_bottom') } best_match = None max_score = -1 for digit, pattern in digit_patterns.items(): matches = sum(1 for segment in pattern if segment_presence.get(segment, False)) non_matches_penalty = sum(1 for segment in segment_presence if segment not in pattern and segment_presence[segment]) current_score = matches - non_matches_penalty if all(segment_presence.get(s, False) for s in pattern): current_score += 0.5 if current_score > max_score: max_score = current_score best_match = digit elif current_score == max_score and best_match is not None: current_digit_non_matches = sum(1 for segment in segment_presence if segment not in pattern and segment_presence[segment]) best_digit_pattern = digit_patterns[best_match] best_digit_non_matches = sum(1 for segment in segment_presence if segment not in best_digit_pattern and segment_presence[segment]) if current_digit_non_matches < best_digit_non_matches: best_match = digit logging.debug(f"Segment presence: {segment_presence}, Detected digit: {best_match}") return best_match def custom_seven_segment_ocr(img, roi_bbox): """Perform custom OCR for seven-segment displays""" try: gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) brightness = estimate_brightness(img) if brightness > 150: _, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) else: _, thresh = cv2.threshold(gray, 80, 255, cv2.THRESH_BINARY) # Lower threshold save_debug_image(thresh, "06_roi_thresh_for_digits") results = easyocr_reader.readtext(thresh, detail=1, paragraph=False, contrast_ths=0.2, adjust_contrast=0.8, text_threshold=0.7, mag_ratio=2.0, allowlist='0123456789.', y_ths=0.3) logging.info(f"EasyOCR results: {results}") if not results: logging.info("EasyOCR found no digits.") return None digits_info = [] for (bbox, text, conf) in results: (x1, y1), (x2, y2), (x3, y3), (x4, y4) = bbox h_bbox = max(y1, y2, y3, y4) - min(y1, y2, y3, y4) if len(text) == 1 and (text.isdigit() or text == '.') and h_bbox > 8: x_min, x_max = int(min(x1, x4)), int(max(x2, x3)) y_min, y_max = int(min(y1, y2)), int(max(y3, y4)) digits_info.append((x_min, x_max, y_min, y_max, text, conf)) digits_info.sort(key=lambda x: x[0]) recognized_text = "" for idx, (x_min, x_max, y_min, y_max, easyocr_char, easyocr_conf) in enumerate(digits_info): x_min, y_min = max(0, x_min), max(0, y_min) x_max, y_max = min(thresh.shape[1], x_max), min(thresh.shape[0], y_max) if x_max <= x_min or y_max <= y_min: continue digit_img_crop = thresh[y_min:y_max, x_min:x_max] save_debug_image(digit_img_crop, f"07_digit_crop_{idx}_{easyocr_char}") if easyocr_conf > 0.9 or easyocr_char == '.' or digit_img_crop.shape[0] < 15 or digit_img_crop.shape[1] < 10: recognized_text += easyocr_char else: digit_from_segments = detect_segments(digit_img_crop) if digit_from_segments: recognized_text += digit_from_segments else: recognized_text += easyocr_char logging.info(f"Before validation, recognized_text: {recognized_text}") text = re.sub(r"[^\d\.]", "", recognized_text) if text.count('.') > 1: text = text.replace('.', '', text.count('.') - 1) if text and re.fullmatch(r"^\d*\.?\d*$", text) and len(text) > 0: if text.startswith('.'): text = "0" + text if text.endswith('.'): text = text.rstrip('.') if text == '.' or text == '': return None return text logging.info(f"Custom OCR text '{recognized_text}' failed validation.") return None except Exception as e: logging.error(f"Custom seven-segment OCR failed: {str(e)}") return None def extract_weight_from_image(pil_img): """Extract weight from a PIL image of a digital scale display""" try: img = np.array(pil_img) img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) save_debug_image(img, "00_input_image") # Log input image brightness = estimate_brightness(img) conf_threshold = 0.6 if brightness > 150 else (0.5 if brightness > 80 else 0.4) roi_img, roi_bbox = detect_roi(img) custom_result = custom_seven_segment_ocr(roi_img, roi_bbox) if custom_result: if "." in custom_result: int_part, dec_part = custom_result.split(".") int_part = int_part.lstrip("0") or "0" dec_part = dec_part.rstrip('0') if not dec_part and int_part != "0": custom_result = int_part elif not dec_part and int_part == "0": custom_result = "0" else: custom_result = f"{int_part}.{dec_part}" else: custom_result = custom_result.lstrip('0') or "0" try: float(custom_result) logging.info(f"Custom OCR result: {custom_result}, Confidence: 100.0%") return custom_result, 100.0 except ValueError: logging.warning(f"Custom OCR result '{custom_result}' is not a valid number, falling back.") custom_result = None logging.info("Custom OCR failed or invalid, falling back to general EasyOCR.") processed_roi_img_gray = cv2.cvtColor(roi_img, cv2.COLOR_BGR2GRAY) kernel_sharpening = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]]) sharpened_roi = cv2.filter2D(processed_roi_img_gray, -1, kernel_sharpening) save_debug_image(sharpened_roi, "08_fallback_sharpened") processed_roi_img_final = cv2.adaptiveThreshold(sharpened_roi, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 21, 5) save_debug_image(processed_roi_img_final, "09_fallback_adaptive_thresh") results = easyocr_reader.readtext(processed_roi_img_final, detail=1, paragraph=False, contrast_ths=0.3, adjust_contrast=0.9, text_threshold=0.5, mag_ratio=2.0, allowlist='0123456789.', batch_size=4, y_ths=0.3) best_weight = None best_conf = 0.0 best_score = 0.0 for (bbox, text, conf) in results: text = text.lower().strip() text = text.replace(",", ".").replace(";", ".").replace(":", ".").replace(" ", "") text = text.replace("o", "0").replace("O", "0").replace("q", "0").replace("Q", "0") text = text.replace("s", "5").replace("S", "5") text = text.replace("g", "9").replace("G", "6") text = text.replace("l", "1").replace("I", "1").replace("|", "1") text = text.replace("b", "8").replace("B", "8") text = text.replace("z", "2").replace("Z", "2") text = text.replace("a", "4").replace("A", "4") text = text.replace("e", "3") text = text.replace("t", "7") text = text.replace("~", "").replace("`", "") text = re.sub(r"(kgs|kg|k|lb|g|gr|pounds|lbs)\b", "", text) text = re.sub(r"[^\d\.]", "", text) if text.count('.') > 1: parts = text.split('.') text = parts[0] + '.' + ''.join(parts[1:]) text = text.strip('.') if re.fullmatch(r"^\d*\.?\d{0,3}$", text) and len(text.replace('.', '')) > 0: try: weight = float(text) range_score = 1.0 if 0.1 <= weight <= 250: range_score = 1.5 elif weight > 250 and weight <= 500: range_score = 1.2 elif weight > 500 and weight <= 1000: range_score = 1.0 else: range_score = 0.5 digit_count = len(text.replace('.', '')) digit_score = 1.0 if digit_count >= 2 and digit_count <= 5: digit_score = 1.3 elif digit_count == 1: digit_score = 0.8 score = conf * range_score * digit_score if roi_bbox: (x_roi, y_roi, w_roi, h_roi) = roi_bbox roi_area = w_roi * h_roi x_min, y_min = int(min(b[0] for b in bbox)), int(min(b[1] for b in bbox)) x_max, y_max = int(max(b[0] for b in bbox)), int(max(b[1] for b in bbox)) bbox_area = (x_max - x_min) * (y_max - y_min) if roi_area > 0 and bbox_area / roi_area < 0.03: score *= 0.5 bbox_aspect_ratio = (x_max - x_min) / (y_max - y_min) if (y_max - y_min) > 0 else 0 if bbox_aspect_ratio < 0.2: score *= 0.7 if score > best_score and conf > conf_threshold: best_weight = text best_conf = conf best_score = score logging.info(f"Candidate EasyOCR weight: '{text}', Conf: {conf}, Score: {score}") except ValueError: logging.warning(f"Could not convert '{text}' to float during EasyOCR fallback.") continue if not best_weight: logging.info("No valid weight detected after all attempts.") return "Not detected", 0.0 if "." in best_weight: int_part, dec_part = best_weight.split(".") int_part = int_part.lstrip("0") or "0" dec_part = dec_part.rstrip('0') if not dec_part and int_part != "0": best_weight = int_part elif not dec_part and int_part == "0": best_weight = "0" else: best_weight = f"{int_part}.{dec_part}" else: best_weight = best_weight.lstrip('0') or "0" try: final_float_weight = float(best_weight) if final_float_weight < 0.01 or final_float_weight > 1000: logging.warning(f"Detected weight {final_float_weight} is outside typical range, reducing confidence.") best_conf *= 0.5 except ValueError: pass logging.info(f"Final detected weight: {best_weight}, Confidence: {round(best_conf * 100, 2)}%") return best_weight, round(best_conf * 100, 2) except Exception as e: logging.error(f"Weight extraction failed unexpectedly: {str(e)}") return "Not detected", 0.0