import pytesseract import numpy as np import cv2 import re from PIL import Image def extract_weight_from_image(pil_img): try: img = np.array(pil_img) # Convert to grayscale gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) # Resize and enhance gray = cv2.resize(gray, None, fx=4, fy=4, interpolation=cv2.INTER_LINEAR) gray = cv2.GaussianBlur(gray, (3, 3), 0) gray = cv2.equalizeHist(gray) # Threshold _, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) # Invert if dark background if np.mean(thresh > 127) < 0.5: thresh = cv2.bitwise_not(thresh) # OCR using Tesseract config = "--psm 6 -c tessedit_char_whitelist=0123456789." text = pytesseract.image_to_string(thresh, config=config) print("🔍 OCR Text:", text) # Extract weight match = re.search(r"\d{1,3}(?:\.\d{1,2})?", text) if match: weight = match.group() return f"{weight} kg", 100.0 else: return "No weight detected kg", 0.0 except Exception as e: return f"Error: {str(e)}", 0.0