import easyocr import numpy as np import cv2 import re import logging from datetime import datetime import os from PIL import Image, ImageEnhance # Set up logging for detailed debugging logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s') # Initialize EasyOCR with English and GPU disabled (enable if you have a compatible GPU) easyocr_reader = easyocr.Reader(['en'], gpu=False) # Directory for debug images DEBUG_DIR = "debug_images" os.makedirs(DEBUG_DIR, exist_ok=True) def save_debug_image(img, filename_suffix, prefix=""): """Saves an image to the debug directory with a timestamp.""" timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f") filename = os.path.join(DEBUG_DIR, f"{prefix}{timestamp}_{filename_suffix}.png") if len(img.shape) == 3: # Color image cv2.imwrite(filename, img) else: # Grayscale image cv2.imwrite(filename, img) logging.debug(f"Saved debug image: {filename}") def estimate_brightness(img): """Estimate image brightness to detect illuminated displays""" gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) brightness = np.mean(gray) logging.debug(f"Estimated brightness: {brightness}") return brightness def preprocess_image(img): """Enhance contrast, brightness, and reduce noise for better digit detection""" # Convert to PIL for initial enhancement pil_img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) pil_img = ImageEnhance.Contrast(pil_img).enhance(2.0) # Stronger contrast pil_img = ImageEnhance.Brightness(pil_img).enhance(1.3) # Moderate brightness boost img = cv2.cvtColor(np.array(pil_img), cv2.COLOR_RGB2BGR) save_debug_image(img, "00_preprocessed_pil") # Apply CLAHE to enhance local contrast gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8)) enhanced = clahe.apply(gray) save_debug_image(enhanced, "00_clahe_enhanced") # Apply bilateral filter to reduce noise while preserving edges filtered = cv2.bilateralFilter(enhanced, d=11, sigmaColor=100, sigmaSpace=100) save_debug_image(filtered, "00_bilateral_filtered") return filtered def detect_roi(img): """Detect and crop the region of interest (likely the digital display)""" try: save_debug_image(img, "01_original") gray = preprocess_image(img) save_debug_image(gray, "02_preprocessed_grayscale") # Try multiple thresholding methods brightness = estimate_brightness(img) if brightness > 150: thresh = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 31, 5) save_debug_image(thresh, "03_roi_adaptive_threshold_high") else: _, thresh = cv2.threshold(gray, 40, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) save_debug_image(thresh, "03_roi_otsu_threshold_low") # Morphological operations to clean up noise and connect digits kernel = np.ones((5, 5), np.uint8) thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=2) save_debug_image(thresh, "03_roi_morph_cleaned") kernel = np.ones((11, 11), np.uint8) dilated = cv2.dilate(thresh, kernel, iterations=5) save_debug_image(dilated, "04_roi_dilated") contours, _ = cv2.findContours(dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) if contours: img_area = img.shape[0] * img.shape[1] valid_contours = [] for c in contours: area = cv2.contourArea(c) if 200 < area < (img_area * 0.99): # Very relaxed area filter x, y, w, h = cv2.boundingRect(c) aspect_ratio = w / h if h > 0 else 0 if 0.5 <= aspect_ratio <= 10.0 and w > 30 and h > 20: # Very relaxed filters valid_contours.append(c) if valid_contours: contour = max(valid_contours, key=cv2.contourArea) # Largest contour x, y, w, h = cv2.boundingRect(contour) padding = 100 # Generous padding x, y = max(0, x - padding), max(0, y - padding) w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y) roi_img = img[y:y+h, x:x+w] save_debug_image(roi_img, "05_detected_roi") logging.info(f"Detected ROI with dimensions: ({x}, {y}, {w}, {h})") return roi_img, (x, y, w, h) logging.info("No suitable ROI found, returning preprocessed image.") save_debug_image(img, "05_no_roi_original_fallback") return img, None except Exception as e: logging.error(f"ROI detection failed: {str(e)}") save_debug_image(img, "05_roi_detection_error_fallback") return img, None def detect_segments(digit_img): """Detect seven-segment patterns in a digit image""" h, w = digit_img.shape if h < 8 or w < 4: # Very relaxed size constraints logging.debug(f"Digit image too small: {w}x{h}") return None segments = { 'top': (int(w*0.1), int(w*0.9), 0, int(h*0.25)), 'middle': (int(w*0.1), int(w*0.9), int(h*0.35), int(h*0.65)), 'bottom': (int(w*0.1), int(w*0.9), int(h*0.75), h), 'left_top': (0, int(w*0.3), int(h*0.05), int(h*0.55)), 'left_bottom': (0, int(w*0.3), int(h*0.45), int(h*0.95)), 'right_top': (int(w*0.7), w, int(h*0.05), int(h*0.55)), 'right_bottom': (int(w*0.7), w, int(h*0.45), int(h*0.95)) } segment_presence = {} for name, (x1, x2, y1, y2) in segments.items(): x1, y1 = max(0, x1), max(0, y1) x2, y2 = min(w, x2), min(h, y2) region = digit_img[y1:y2, x1:x2] if region.size == 0: segment_presence[name] = False continue pixel_count = np.sum(region == 255) total_pixels = region.size segment_presence[name] = pixel_count / total_pixels > 0.3 # Very low threshold logging.debug(f"Segment {name}: {pixel_count}/{total_pixels} = {pixel_count/total_pixels:.2f}") digit_patterns = { '0': ('top', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'), '1': ('right_top', 'right_bottom'), '2': ('top', 'middle', 'bottom', 'left_bottom', 'right_top'), '3': ('top', 'middle', 'bottom', 'right_top', 'right_bottom'), '4': ('middle', 'left_top', 'right_top', 'right_bottom'), '5': ('top', 'middle', 'bottom', 'left_top', 'right_bottom'), '6': ('top', 'middle', 'bottom', 'left_top', 'left_bottom', 'right_bottom'), '7': ('top', 'right_top', 'right_bottom'), '8': ('top', 'middle', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'), '9': ('top', 'middle', 'bottom', 'left_top', 'right_top', 'right_bottom') } best_match = None max_score = -1 for digit, pattern in digit_patterns.items(): matches = sum(1 for segment in pattern if segment_presence.get(segment, False)) non_matches_penalty = sum(1 for segment in segment_presence if segment not in pattern and segment_presence[segment]) current_score = matches - non_matches_penalty if all(segment_presence.get(s, False) for s in pattern): current_score += 0.5 if current_score > max_score: max_score = current_score best_match = digit elif current_score == max_score and best_match is not None: current_digit_non_matches = sum(1 for segment in segment_presence if segment not in pattern and segment_presence[segment]) best_digit_pattern = digit_patterns[best_match] best_digit_non_matches = sum(1 for segment in segment_presence if segment not in best_digit_pattern and segment_presence[segment]) if current_digit_non_matches < best_digit_non_matches: best_match = digit logging.debug(f"Segment presence: {segment_presence}, Detected digit: {best_match}") return best_match def custom_seven_segment_ocr(img, roi_bbox): """Perform custom OCR for seven-segment displays""" try: gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) brightness = estimate_brightness(img) # Try multiple thresholding approaches if brightness > 150: _, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) save_debug_image(thresh, "06_roi_otsu_threshold") else: _, thresh = cv2.threshold(gray, 30, 255, cv2.THRESH_BINARY) save_debug_image(thresh, "06_roi_simple_threshold") # Morphological cleaning kernel = np.ones((3, 3), np.uint8) thresh = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=1) save_debug_image(thresh, "06_roi_morph_cleaned") results = easyocr_reader.readtext(thresh, detail=1, paragraph=False, contrast_ths=0.1, adjust_contrast=1.0, text_threshold=0.3, mag_ratio=4.0, allowlist='0123456789.-', y_ths=0.6) logging.info(f"Custom OCR EasyOCR results: {results}") if not results: logging.info("Custom OCR EasyOCR found no digits.") return None digits_info = [] for (bbox, text, conf) in results: (x1, y1), (x2, y2), (x3, y3), (x4, y4) = bbox h_bbox = max(y1, y2, y3, y4) - min(y1, y2, y3, y4) if len(text) == 1 and (text.isdigit() or text in '.-') and h_bbox > 4: x_min, x_max = int(min(x1, x4)), int(max(x2, x3)) y_min, y_max = int(min(y1, y2)), int(max(y3, y4)) digits_info.append((x_min, x_max, y_min, y_max, text, conf)) digits_info.sort(key=lambda x: x[0]) recognized_text = "" for idx, (x_min, x_max, y_min, y_max, easyocr_char, easyocr_conf) in enumerate(digits_info): x_min, y_min = max(0, x_min), max(0, y_min) x_max, y_max = min(thresh.shape[1], x_max), min(thresh.shape[0], y_max) if x_max <= x_min or y_max <= y_min: continue digit_img_crop = thresh[y_min:y_max, x_min:x_max] save_debug_image(digit_img_crop, f"07_digit_crop_{idx}_{easyocr_char}") if easyocr_conf > 0.8 or easyocr_char in '.-' or digit_img_crop.shape[0] < 8 or digit_img_crop.shape[1] < 4: recognized_text += easyocr_char else: digit_from_segments = detect_segments(digit_img_crop) if digit_from_segments: recognized_text += digit_from_segments else: recognized_text += easyocr_char logging.info(f"Custom OCR before validation, recognized_text: {recognized_text}") # Relaxed validation for debugging if recognized_text: return recognized_text logging.info(f"Custom OCR text '{recognized_text}' failed validation.") return None except Exception as e: logging.error(f"Custom seven-segment OCR failed: {str(e)}") return None def extract_weight_from_image(pil_img): """Extract weight from a PIL image of a digital scale display""" try: img = np.array(pil_img) img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) save_debug_image(img, "00_input_image") brightness = estimate_brightness(img) conf_threshold = 0.3 if brightness > 150 else (0.2 if brightness > 80 else 0.1) roi_img, roi_bbox = detect_roi(img) custom_result = custom_seven_segment_ocr(roi_img, roi_bbox) if custom_result: # Basic cleaning text = re.sub(r"[^\d\.\-]", "", custom_result) # Allow negative signs if text.count('.') > 1: text = text.replace('.', '', text.count('.') - 1) if text: if text.startswith('.'): text = "0" + text if text.endswith('.'): text = text.rstrip('.') if text == '.' or text == '': logging.warning(f"Custom OCR result '{text}' is invalid after cleaning.") else: try: float(text) logging.info(f"Custom OCR result: {text}, Confidence: 100.0%") return text, 100.0 except ValueError: logging.warning(f"Custom OCR result '{text}' is not a valid number, falling back.") logging.warning(f"Custom OCR result '{custom_result}' failed validation, falling back.") logging.info("Custom OCR failed or invalid, falling back to general EasyOCR.") processed_roi_img = preprocess_image(roi_img) # Try multiple thresholding approaches if brightness > 150: thresh = cv2.adaptiveThreshold(processed_roi_img, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 41, 7) save_debug_image(thresh, "09_fallback_adaptive_thresh") else: _, thresh = cv2.threshold(processed_roi_img, 30, 255, cv2.THRESH_BINARY) save_debug_image(thresh, "09_fallback_simple_thresh") # Morphological cleaning kernel = np.ones((3, 3), np.uint8) thresh = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=1) save_debug_image(thresh, "09_fallback_morph_cleaned") results = easyocr_reader.readtext(thresh, detail=1, paragraph=False, contrast_ths=0.1, adjust_contrast=1.0, text_threshold=0.2, mag_ratio=5.0, allowlist='0123456789.-', batch_size=4, y_ths=0.6) best_weight = None best_conf = 0.0 best_score = 0.0 for (bbox, text, conf) in results: logging.info(f"Fallback EasyOCR raw text: {text}, Confidence: {conf}") text = text.lower().strip() text = text.replace(",", ".").replace(";", ".").replace(":", ".").replace(" ", "") text = text.replace("o", "0").replace("O", "0").replace("q", "0").replace("Q", "0") text = text.replace("s", "5").replace("S", "5") text = text.replace("g", "9").replace("G", "6") text = text.replace("l", "1").replace("I", "1").replace("|", "1") text = text.replace("b", "8").replace("B", "8") text = text.replace("z", "2").replace("Z", "2") text = text.replace("a", "4").replace("A", "4") text = text.replace("e", "3") text = text.replace("t", "7") text = text.replace("~", "").replace("`", "") text = re.sub(r"(kgs|kg|k|lb|g|gr|pounds|lbs)\b", "", text) text = re.sub(r"[^\d\.\-]", "", text) if text.count('.') > 1: parts = text.split('.') text = parts[0] + '.' + ''.join(parts[1:]) text = text.strip('.') if len(text.replace('.', '').replace('-', '')) > 0: # Allow negative weights try: weight = float(text) range_score = 1.0 if 0.0 <= weight <= 250: range_score = 1.5 elif weight > 250 and weight <= 500: range_score = 1.2 elif weight > 500 and weight <= 1000: range_score = 1.0 else: range_score = 0.5 digit_count = len(text.replace('.', '').replace('-', '')) digit_score = 1.0 if digit_count >= 2 and digit_count <= 5: digit_score = 1.3 elif digit_count == 1: digit_score = 0.8 score = conf * range_score * digit_score if roi_bbox: (x_roi, y_roi, w_roi, h_roi) = roi_bbox roi_area = w_roi * h_roi x_min, y_min = int(min(b[0] for b in bbox)), int(min(b[1] for b in bbox)) x_max, y_max = int(max(b[0] for b in bbox)), int(max(b[1] for b in bbox)) bbox_area = (x_max - x_min) * (y_max - y_min) if roi_area > 0 and bbox_area / roi_area < 0.02: score *= 0.5 bbox_aspect_ratio = (x_max - x_min) / (y_max - y_min) if (y_max - y_min) > 0 else 0 if bbox_aspect_ratio < 0.1: score *= 0.7 if score > best_score and conf > conf_threshold: best_weight = text best_conf = conf best_score = score logging.info(f"Candidate EasyOCR weight: '{text}', Conf: {conf}, Score: {score}") except ValueError: logging.warning(f"Could not convert '{text}' to float during EasyOCR fallback.") continue if not best_weight: logging.info("No valid weight detected after all attempts.") return "Not detected", 0.0 if "." in best_weight: int_part, dec_part = best_weight.split(".") int_part = int_part.lstrip("0") or "0" dec_part = dec_part.rstrip('0') if not dec_part and int_part != "0": best_weight = int_part elif not dec_part and int_part == "0": best_weight = "0" else: best_weight = f"{int_part}.{dec_part}" else: best_weight = best_weight.lstrip('0') or "0" try: final_float_weight = float(best_weight) if final_float_weight < 0.0 or final_float_weight > 1000: logging.warning(f"Detected weight {final_float_weight} is outside typical range, reducing confidence.") best_conf *= 0.5 except ValueError: logging.warning(f"Final weight '{best_weight}' is not a valid number.") best_conf *= 0.5 logging.info(f"Final detected weight: {best_weight}, Confidence: {round(best_conf * 100, 2)}%") return best_weight, round(best_conf * 100, 2) except Exception as e: logging.error(f"Weight extraction failed unexpectedly: {str(e)}") return "Not detected", 0.0