import numpy as np import cv2 import re import logging from datetime import datetime import os from PIL import Image from transformers import TrOCRProcessor, VisionEncoderDecoderModel # Set up logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') # Initialize TrOCR with error handling try: processor = TrOCRProcessor.from_pretrained("microsoft/trocr-small-printed") model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-small-printed") logging.info("TrOCR model and processor loaded successfully") except Exception as e: logging.error(f"Failed to load TrOCR model: {str(e)}") processor = None model = None # Directory for debug images DEBUG_DIR = "debug_images" os.makedirs(DEBUG_DIR, exist_ok=True) def save_debug_image(img, filename_suffix, prefix=""): """Save image to debug directory with timestamp.""" timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f") filename = os.path.join(DEBUG_DIR, f"{prefix}{timestamp}_{filename_suffix}.png") if isinstance(img, Image.Image): img.save(filename) elif len(img.shape) == 3: cv2.imwrite(filename, cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) else: cv2.imwrite(filename, img) logging.info(f"Saved debug image: {filename}") def estimate_brightness(img): """Estimate image brightness.""" gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) return np.mean(gray) def preprocess_image(img): """Preprocess image for OCR with enhanced contrast and noise reduction.""" gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # Dynamic contrast adjustment based on brightness brightness = estimate_brightness(img) clahe_clip = 4.0 if brightness < 100 else 2.0 clahe = cv2.createCLAHE(clipLimit=clahe_clip, tileGridSize=(8, 8)) enhanced = clahe.apply(gray) save_debug_image(enhanced, "01_preprocess_clahe") # Gaussian blur to reduce noise blurred = cv2.GaussianBlur(enhanced, (3, 3), 0) save_debug_image(blurred, "02_preprocess_blur") # Adaptive thresholding for digit segmentation block_size = max(11, min(31, int(img.shape[0] / 20) * 2 + 1)) thresh = cv2.adaptiveThreshold(blurred, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, block_size, 2) # Morphological operations to clean up digits kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3)) thresh = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=1) thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=1) save_debug_image(thresh, "03_preprocess_morph") return thresh, enhanced def correct_rotation(img): """Correct image rotation using edge detection.""" try: gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) edges = cv2.Canny(gray, 50, 150) lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=50, minLineLength=30, maxLineGap=10) if lines is not None: angles = [np.arctan2(line[0][3] - line[0][1], line[0][2] - line[0][0]) * 180 / np.pi for line in lines] angle = np.median(angles) if abs(angle) > 1.0: h, w = img.shape[:2] center = (w // 2, h // 2) M = cv2.getRotationMatrix2D(center, angle, 1.0) img = cv2.warpAffine(img, M, (w, h)) save_debug_image(img, "00_rotated_image") logging.info(f"Applied rotation: {angle:.2f} degrees") return img except Exception as e: logging.error(f"Rotation correction failed: {str(e)}") return img def detect_roi(img): """Detect region of interest (display) with refined contour filtering.""" try: save_debug_image(img, "04_original") thresh, enhanced = preprocess_image(img) brightness_map = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) if contours: img_area = img.shape[0] * img.shape[1] valid_contours = [] for c in contours: area = cv2.contourArea(c) x, y, w, h = cv2.boundingRect(c) roi_brightness = np.mean(brightness_map[y:y+h, x:x+w]) aspect_ratio = w / h # Relaxed constraints for digital displays if (200 < area < (img_area * 0.8) and 0.5 <= aspect_ratio <= 15.0 and w > 50 and h > 20 and roi_brightness > 30): valid_contours.append((c, area * roi_brightness)) logging.debug(f"Contour: Area={area}, Aspect={aspect_ratio:.2f}, Brightness={roi_brightness:.2f}") if valid_contours: contour, _ = max(valid_contours, key=lambda x: x[1]) x, y, w, h = cv2.boundingRect(contour) padding = max(15, min(50, int(min(w, h) * 0.3))) x, y = max(0, x - padding), max(0, y - padding) w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y) roi_img = img[y:y+h, x:x+w] save_debug_image(roi_img, "05_detected_roi") logging.info(f"Detected ROI: ({x}, {y}, {w}, {h})") return roi_img, (x, y, w, h) logging.info("No ROI found, using full image.") save_debug_image(img, "05_no_roi_fallback") return img, None except Exception as e: logging.error(f"ROI detection failed: {str(e)}") save_debug_image(img, "05_roi_error_fallback") return img, None def perform_ocr(img): """Perform OCR using TrOCR for digital displays.""" if processor is None or model is None: logging.error("TrOCR model not loaded, cannot perform OCR.") return None, 0.0 try: # Convert to PIL for TrOCR pil_img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) save_debug_image(pil_img, "06_ocr_input") # Process image with TrOCR pixel_values = processor(pil_img, return_tensors="pt").pixel_values generated_ids = model.generate(pixel_values, max_length=10) text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] logging.info(f"TrOCR raw output: {text}") # Clean and validate text text = re.sub(r"[^\d\.]", "", text) if text.count('.') > 1: text = text.replace('.', '', text.count('.') - 1) text = text.strip('.') if text and re.fullmatch(r"^\d*\.?\d*$", text): text = text.lstrip('0') or '0' confidence = 95.0 if len(text.replace('.', '')) >= 2 else 85.0 logging.info(f"Validated text: {text}, Confidence: {confidence:.2f}%") return text, confidence logging.info(f"Text '{text}' failed validation.") return None, 0.0 except Exception as e: logging.error(f"OCR failed: {str(e)}") return None, 0.0 def extract_weight_from_image(pil_img): """Extract weight from a digital scale image.""" try: img = np.array(pil_img) img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) save_debug_image(img, "00_input_image") img = correct_rotation(img) brightness = estimate_brightness(img) conf_threshold = 0.7 if brightness > 100 else 0.5 roi_img, roi_bbox = detect_roi(img) if roi_bbox: conf_threshold *= 1.1 if (roi_bbox[2] * roi_bbox[3]) > (img.shape[0] * img.shape[1] * 0.3) else 1.0 result, confidence = perform_ocr(roi_img) if result and confidence >= conf_threshold * 100: try: weight = float(result) if 0.01 <= weight <= 1000: # Narrowed range for typical scale weights logging.info(f"Detected weight: {result} kg, Confidence: {confidence:.2f}%") return result, confidence logging.warning(f"Weight {result} out of range.") except ValueError: logging.warning(f"Invalid weight format: {result}") logging.info("Primary OCR failed, using full image fallback.") result, confidence = perform_ocr(img) if result and confidence >= conf_threshold * 0.9 * 100: try: weight = float(result) if 0.01 <= weight <= 1000: logging.info(f"Full image weight: {result} kg, Confidence: {confidence:.2f}%") return result, confidence logging.warning(f"Full image weight {result} out of range.") except ValueError: logging.warning(f"Invalid full image weight format: {result}") logging.info("No valid weight detected.") return "Not detected", 0.0 except Exception as e: logging.error(f"Weight extraction failed: {str(e)}") return "Not detected", 0.0