import cv2 import numpy as np import re from PIL import Image def extract_weight_from_image(pil_img): try: img = np.array(pil_img) # Convert to grayscale gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) # Threshold image _, thresh = cv2.threshold(gray, 200, 255, cv2.THRESH_BINARY) # Invert if needed if np.mean(thresh > 127) < 0.5: thresh = cv2.bitwise_not(thresh) # Resize to make digits bigger scale_factor = 4 resized = cv2.resize(thresh, None, fx=scale_factor, fy=scale_factor, interpolation=cv2.INTER_LINEAR) # OCR-style region crop: focus on left part of display height, width = resized.shape digit_region = resized[0:height, 0:int(width * 0.7)] # ignore 'kg' # Use pytesseract as fallback OCR for just digits import pytesseract config = "--psm 7 -c tessedit_char_whitelist=0123456789." result = pytesseract.image_to_string(digit_region, config=config) print("Raw OCR:", result) match = re.search(r"(\d{1,4}(?:\.\d{1,2})?)", result) if match: return f"{match.group()} kg", 100.0 else: return "No weight detected kg", 0.0 except Exception as e: return f"Error: {str(e)}", 0.0