import pytesseract import numpy as np import cv2 import re import logging from datetime import datetime import os from PIL import Image # Set up logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') # Directory for debug images DEBUG_DIR = "debug_images" os.makedirs(DEBUG_DIR, exist_ok=True) def save_debug_image(img, filename_suffix, prefix=""): """Save image to debug directory with timestamp.""" timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f") filename = os.path.join(DEBUG_DIR, f"{prefix}{timestamp}_{filename_suffix}.png") if isinstance(img, Image.Image): img.save(filename) elif len(img.shape) == 3: cv2.imwrite(filename, cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) else: cv2.imwrite(filename, img) logging.info(f"Saved debug image: {filename}") def estimate_brightness(img): """Estimate image brightness.""" gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) return np.mean(gray) def preprocess_image(img): """Preprocess image with aggressive contrast and noise handling.""" gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) brightness = estimate_brightness(img) # Maximum CLAHE with adjusted clip for better digit enhancement clahe_clip = 12.0 if brightness < 80 else 8.0 clahe = cv2.createCLAHE(clipLimit=clahe_clip, tileGridSize=(4, 4)) enhanced = clahe.apply(gray) save_debug_image(enhanced, "01_preprocess_clahe") # Stronger edge-preserving blur blurred = cv2.bilateralFilter(enhanced, 7, 100, 100) save_debug_image(blurred, "02_preprocess_blur") # Adaptive thresholding with smaller blocks block_size = max(3, min(11, int(img.shape[0] / 40) * 2 + 1)) thresh = cv2.adaptiveThreshold(blurred, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, block_size, 2) # Morphological operations for robust digit segmentation kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3)) thresh = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=1) thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=6) save_debug_image(thresh, "03_preprocess_morph") return thresh, enhanced def correct_rotation(img): """Correct image rotation using edge detection.""" try: gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) edges = cv2.Canny(gray, 15, 60, apertureSize=3) lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=20, minLineLength=10, maxLineGap=3) if lines is not None: angles = [np.arctan2(line[0][3] - line[0][1], line[0][2] - line[0][0]) * 180 / np.pi for line in lines] angle = np.median(angles) if abs(angle) > 0.2: h, w = img.shape[:2] center = (w // 2, h // 2) M = cv2.getRotationMatrix2D(center, angle, 1.0) img = cv2.warpAffine(img, M, (w, h)) save_debug_image(img, "00_rotated_image") logging.info(f"Applied rotation: {angle:.2f} degrees") return img except Exception as e: logging.error(f"Rotation correction failed: {str(e)}") return img def detect_roi(img): """Detect region of interest with flexible contour filtering.""" try: save_debug_image(img, "04_original") thresh, enhanced = preprocess_image(img) brightness_map = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) block_sizes = [max(3, min(11, int(img.shape[0] / s) * 2 + 1)) for s in [4, 8, 12]] valid_contours = [] img_area = img.shape[0] * img.shape[1] for block_size in block_sizes: temp_thresh = cv2.adaptiveThreshold(enhanced, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, block_size, 2) kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5)) temp_thresh = cv2.morphologyEx(temp_thresh, cv2.MORPH_CLOSE, kernel, iterations=6) save_debug_image(temp_thresh, f"05_roi_threshold_block{block_size}") contours, _ = cv2.findContours(temp_thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) for c in contours: area = cv2.contourArea(c) x, y, w, h = cv2.boundingRect(c) roi_brightness = np.mean(brightness_map[y:y+h, x:x+w]) aspect_ratio = w / h if (150 < area < (img_area * 0.8) and 0.15 <= aspect_ratio <= 12.0 and w > 40 and h > 15 and roi_brightness > 30): valid_contours.append((c, area * roi_brightness)) logging.debug(f"Contour (block {block_size}): Area={area}, Aspect={aspect_ratio:.2f}, Brightness={roi_brightness:.2f}") if valid_contours: contour, _ = max(valid_contours, key=lambda x: x[1]) x, y, w, h = cv2.boundingRect(contour) padding = max(10, min(30, int(min(w, h) * 0.25))) x, y = max(0, x - padding), max(0, y - padding) w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y) roi_img = img[y:y+h, x:x+w] save_debug_image(roi_img, "06_detected_roi") logging.info(f"Detected ROI: ({x}, {y}, {w}, {h})") return roi_img, (x, y, w, h) logging.info("No ROI found, using full image.") save_debug_image(img, "06_no_roi_fallback") return img, None except Exception as e: logging.error(f"ROI detection failed: {str(e)}") save_debug_image(img, "06_roi_error_fallback") return img, None def detect_digit_template(digit_img, brightness): """Digit recognition using template matching with adjusted patterns.""" try: h, w = digit_img.shape if h < 8 or w < 4: logging.debug("Digit image too small for template matching.") return None # Adjusted digit templates for seven-segment display digit_templates = { '0': np.array([[1, 1, 1, 1, 1], [1, 0, 0, 0, 1], [1, 0, 0, 0, 1], [1, 0, 0, 0, 1], [1, 1, 1, 1, 1]]), '1': np.array([[0, 0, 1, 0, 0], [0, 0, 1, 0, 0], [0, 0, 1, 0, 0], [0, 0, 1, 0, 0], [0, 0, 1, 0, 0]]), '2': np.array([[1, 1, 1, 1, 1], [0, 0, 0, 1, 1], [1, 1, 1, 1, 1], [1, 1, 0, 0, 0], [1, 1, 1, 1, 1]]), '3': np.array([[1, 1, 1, 1, 1], [0, 0, 0, 1, 1], [0, 1, 1, 1, 1], [0, 0, 0, 1, 1], [1, 1, 1, 1, 1]]), '4': np.array([[1, 1, 0, 0, 1], [1, 1, 0, 0, 1], [1, 1, 1, 1, 1], [0, 0, 0, 0, 1], [0, 0, 0, 0, 1]]), '5': np.array([[1, 1, 1, 1, 1], [1, 1, 0, 0, 0], [1, 1, 1, 1, 1], [0, 0, 0, 1, 1], [1, 1, 1, 1, 1]]), '6': np.array([[1, 1, 1, 1, 1], [1, 1, 0, 0, 0], [1, 1, 1, 1, 1], [1, 0, 0, 1, 1], [1, 1, 1, 1, 1]]), '7': np.array([[1, 1, 1, 1, 1], [0, 0, 0, 0, 1], [0, 0, 0, 0, 1], [0, 0, 0, 0, 1], [0, 0, 0, 0, 1]]), '8': np.array([[1, 1, 1, 1, 1], [1, 0, 0, 0, 1], [1, 1, 1, 1, 1], [1, 0, 0, 0, 1], [1, 1, 1, 1, 1]]), '9': np.array([[1, 1, 1, 1, 1], [1, 0, 0, 0, 1], [1, 1, 1, 1, 1], [0, 0, 0, 1, 1], [1, 1, 1, 1, 1]]), '.': np.array([[0, 0, 0], [0, 1, 0], [0, 0, 0]]) } # Resize digit_img to match template size (5x5 for digits, 3x3 for decimal) digit_img_resized = cv2.resize(digit_img, (5, 5), interpolation=cv2.INTER_NEAREST) best_match, best_score = None, -1 for digit, template in digit_templates.items(): if digit == '.': digit_img_resized = cv2.resize(digit_img, (3, 3), interpolation=cv2.INTER_NEAREST) result = cv2.matchTemplate(digit_img_resized, template, cv2.TM_CCOEFF_NORMED) _, max_val, _, _ = cv2.minMaxLoc(result) if max_val > 0.65 and max_val > best_score: # Lowered threshold for better match best_score = max_val best_match = digit logging.debug(f"Template match: {best_match}, Score: {best_score:.2f}") return best_match if best_score > 0.65 else None except Exception as e: logging.error(f"Template digit detection failed: {str(e)}") return None def perform_ocr(img, roi_bbox): """Perform OCR with Tesseract and template-based fallback.""" try: thresh, enhanced = preprocess_image(img) brightness = estimate_brightness(img) pil_img = Image.fromarray(enhanced) save_debug_image(pil_img, "07_ocr_input") # Tesseract with flexible numeric config custom_config = r'--oem 3 --psm 6 -c tessedit_char_whitelist=0123456789.' text = pytesseract.image_to_string(pil_img, config=custom_config) logging.info(f"Tesseract raw output: {text}") # Clean and validate text = re.sub(r"[^\d\.]", "", text) if text.count('.') > 1: text = text.replace('.', '', text.count('.') - 1) text = text.strip('.') if text and re.fullmatch(r"^\d*\.?\d*$", text): text = text.lstrip('0') or '0' confidence = 97.0 if len(text.replace('.', '')) >= 3 else 94.0 logging.info(f"Validated Tesseract text: {text}, Confidence: {confidence:.2f}%") return text, confidence # Fallback to template-based detection logging.info("Tesseract failed, using template-based detection.") contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) digits_info = [] for c in contours: x, y, w, h = cv2.boundingRect(c) if w > 6 and h > 8 and 0.1 <= w/h <= 2.5: # Loosened size and aspect ratio digits_info.append((x, x+w, y, y+h)) if digits_info: digits_info.sort(key=lambda x: x[0]) recognized_text = "" prev_x_max = -float('inf') for idx, (x_min, x_max, y_min, y_max) in enumerate(digits_info): x_min, y_min = max(0, x_min), max(0, y_min) x_max, y_max = min(thresh.shape[1], x_max), min(thresh.shape[0], y_max) if x_max <= x_min or y_max <= y_min: continue digit_crop = thresh[y_min:y_max, x_min:x_max] save_debug_image(digit_crop, f"08_digit_crop_{idx}") digit = detect_digit_template(digit_crop, brightness) if digit: recognized_text += digit elif x_min - prev_x_max < 6 and prev_x_max != -float('inf'): # Adjusted decimal gap recognized_text += '.' prev_x_max = x_max text = re.sub(r"[^\d\.]", "", recognized_text) if text.count('.') > 1: text = text.replace('.', '', text.count('.') - 1) text = text.strip('.') if text and re.fullmatch(r"^\d*\.?\d*$", text): text = text.lstrip('0') or '0' confidence = 92.0 if len(text.replace('.', '')) >= 3 else 89.0 logging.info(f"Validated template text: {text}, Confidence: {confidence:.2f}%") return text, confidence logging.info("No valid digits detected.") return None, 0.0 except Exception as e: logging.error(f"OCR failed: {str(e)}") return None, 0.0 def extract_weight_from_image(pil_img): """Extract weight from any digital scale image.""" try: img = np.array(pil_img) img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) save_debug_image(img, "00_input_image") img = correct_rotation(img) brightness = estimate_brightness(img) conf_threshold = 0.75 if brightness > 100 else 0.55 # Lowered threshold roi_img, roi_bbox = detect_roi(img) if roi_bbox: conf_threshold *= 1.05 if (roi_bbox[2] * roi_bbox[3]) > (img.shape[0] * img.shape[1] * 0.15) else 1.0 result, confidence = perform_ocr(roi_img, roi_bbox) if result and confidence >= conf_threshold * 100: try: weight = float(result) if 0.01 <= weight <= 1000: logging.info(f"Detected weight: {result} kg, Confidence: {confidence:.2f}%") return result, confidence logging.warning(f"Weight {result} out of range.") except ValueError: logging.warning(f"Invalid weight format: {result}") logging.info("Primary OCR failed, using full image fallback.") result, confidence = perform_ocr(img, None) if result and confidence >= conf_threshold * 0.8 * 100: # Adjusted fallback threshold try: weight = float(result) if 0.01 <= weight <= 1000: logging.info(f"Full image weight: {result} kg, Confidence: {confidence:.2f}%") return result, confidence logging.warning(f"Full image weight {result} out of range.") except ValueError: logging.warning(f"Invalid full image weight format: {result}") logging.info("No valid weight detected.") return "Not detected", 0.0 except Exception as e: logging.error(f"Weight extraction failed: {str(e)}") return "Not detected", 0.0