import easyocr import numpy as np import cv2 import re import logging from datetime import datetime import os # Set up logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') # Initialize EasyOCR easyocr_reader = easyocr.Reader(['en'], gpu=False) # Directory for debug images DEBUG_DIR = "debug_images" os.makedirs(DEBUG_DIR, exist_ok=True) def save_debug_image(img, filename_suffix, prefix=""): """Save image to debug directory with timestamp.""" timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f") filename = os.path.join(DEBUG_DIR, f"{prefix}{timestamp}_{filename_suffix}.png") if len(img.shape) == 3: cv2.imwrite(filename, img) else: cv2.imwrite(filename, img) logging.info(f"Saved debug image: {filename}") def estimate_brightness(img): """Estimate image brightness.""" gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) return np.mean(gray) def preprocess_image(img): """Preprocess image for OCR.""" gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) denoised = cv2.bilateralFilter(gray, 5, 8, 8) save_debug_image(denoised, "01_preprocess_bilateral") clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8)) enhanced = clahe.apply(denoised) save_debug_image(enhanced, "02_preprocess_clahe") return enhanced def correct_rotation(img): """Correct image rotation.""" try: edges = cv2.Canny(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY), 50, 150) lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=50, minLineLength=30, maxLineGap=10) if lines is not None: angles = [np.arctan2(line[0][3] - line[0][1], line[0][2] - line[0][0]) * 180 / np.pi for line in lines] angle = np.median(angles) if abs(angle) > 2: h, w = img.shape[:2] center = (w // 2, h // 2) M = cv2.getRotationMatrix2D(center, angle, 1.0) img = cv2.warpAffine(img, M, (w, h)) save_debug_image(img, "00_rotated_image") logging.info(f"Applied rotation: {angle:.2f} degrees") return img except Exception as e: logging.error(f"Rotation correction failed: {str(e)}") return img def detect_roi(img): """Detect region of interest (display).""" try: save_debug_image(img, "03_original") preprocessed = preprocess_image(img) brightness_map = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) block_size = max(9, min(31, int(img.shape[0] / 25) * 2 + 1)) thresh = cv2.adaptiveThreshold(preprocessed, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, block_size, 2) save_debug_image(thresh, "04_roi_threshold") contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) if contours: img_area = img.shape[0] * img.shape[1] valid_contours = [] for c in contours: area = cv2.contourArea(c) x, y, w, h = cv2.boundingRect(c) roi_brightness = np.mean(brightness_map[y:y+h, x:x+w]) aspect_ratio = w / h if (50 < area < (img_area * 0.95) and 0.2 <= aspect_ratio <= 30.0 and w > 30 and h > 10 and roi_brightness > 30): valid_contours.append((c, roi_brightness)) logging.debug(f"Contour: Area={area}, Aspect={aspect_ratio:.2f}, Brightness={roi_brightness:.2f}") if valid_contours: contour, _ = max(valid_contours, key=lambda x: x[1]) x, y, w, h = cv2.boundingRect(contour) padding = 200 x, y = max(0, x - padding), max(0, y - padding) w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y) roi_img = img[y:y+h, x:x+w] save_debug_image(roi_img, "05_detected_roi") logging.info(f"Detected ROI: ({x}, {y}, {w}, {h})") return roi_img, (x, y, w, h) logging.info("No ROI found, using full image.") save_debug_image(img, "05_no_roi_fallback") return img, None except Exception as e: logging.error(f"ROI detection failed: {str(e)}") save_debug_image(img, "05_roi_error_fallback") return img, None def detect_segments(digit_img, brightness): """Detect seven-segment digits.""" h, w = digit_img.shape if h < 5 or w < 3: return None segments = { 'top': (int(w*0.1), int(w*0.9), 0, int(h*0.25)), 'middle': (int(w*0.1), int(w*0.9), int(h*0.45), int(h*0.55)), 'bottom': (int(w*0.1), int(w*0.9), int(h*0.75), h), 'left_top': (0, int(w*0.3), int(h*0.1), int(h*0.5)), 'left_bottom': (0, int(w*0.3), int(h*0.5), int(h*0.9)), 'right_top': (int(w*0.7), w, int(h*0.1), int(h*0.5)), 'right_bottom': (int(w*0.7), w, int(h*0.5), int(h*0.9)) } segment_presence = {} for name, (x1, x2, y1, y2) in segments.items(): x1, y1 = max(0, x1), max(0, y1) x2, y2 = min(w, x2), min(h, y2) region = digit_img[y1:y2, x1:x2] if region.size == 0: segment_presence[name] = False continue pixel_count = np.sum(region == 255) total_pixels = region.size segment_presence[name] = pixel_count / total_pixels > (0.1 if brightness < 80 else 0.25) digit_patterns = { '0': ('top', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'), '1': ('right_top', 'right_bottom'), '2': ('top', 'middle', 'bottom', 'left_bottom', 'right_top'), '3': ('top', 'middle', 'bottom', 'right_top', 'right_bottom'), '4': ('middle', 'left_top', 'right_top', 'right_bottom'), '5': ('top', 'middle', 'bottom', 'left_top', 'right_bottom'), '6': ('top', 'middle', 'bottom', 'left_top', 'left_bottom', 'right_bottom'), '7': ('top', 'right_top', 'right_bottom'), '8': ('top', 'middle', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'), '9': ('top', 'middle', 'bottom', 'left_top', 'right_top', 'right_bottom') } best_match = None max_score = -1 for digit, pattern in digit_patterns.items(): matches = sum(1 for segment in pattern if segment_presence.get(segment, False)) non_matches_penalty = sum(1 for segment in segment_presence if segment not in pattern and segment_presence[segment]) score = matches - 0.1 * non_matches_penalty if matches >= len(pattern) * 0.55: score += 1.0 if score > max_score: max_score = score best_match = digit logging.debug(f"Segment presence: {segment_presence}, Digit: {best_match}") return best_match def custom_seven_segment_ocr(img, roi_bbox): """Perform OCR for seven-segment displays.""" try: preprocessed = preprocess_image(img) brightness = estimate_brightness(img) _, thresh = cv2.threshold(preprocessed, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU) save_debug_image(thresh, "06_roi_thresh_digits") results = easyocr_reader.readtext(thresh, detail=1, paragraph=False, contrast_ths=0.05, adjust_contrast=1.2, text_threshold=0.15, mag_ratio=4.0, allowlist='0123456789.', batch_size=2, y_ths=0.3) logging.info(f"EasyOCR results: {results}") if not results: logging.info("No digits found.") return None digits_info = [] for (bbox, text, conf) in results: (x1, y1), (x2, y2), (x3, y3), (x4, y4) = bbox h_bbox = max(y1, y2, y3, y4) - min(y1, y2, y3, y4) if (text.isdigit() or text == '.') and h_bbox > 4: x_min, x_max = int(min(x1, x4)), int(max(x2, x3)) y_min, y_max = int(min(y1, y2)), int(max(y3, y4)) digits_info.append((x_min, x_max, y_min, y_max, text, conf)) digits_info.sort(key=lambda x: x[0]) recognized_text = "" for idx, (x_min, x_max, y_min, y_max, easyocr_char, easyocr_conf) in enumerate(digits_info): x_min, y_min = max(0, x_min), max(0, y_min) x_max, y_max = min(thresh.shape[1], x_max), min(thresh.shape[0], y_max) if x_max <= x_min or y_max <= y_min: continue digit_img_crop = thresh[y_min:y_max, x_min:x_max] save_debug_image(digit_img_crop, f"07_digit_crop_{idx}_{easyocr_char}") if easyocr_conf > 0.8 or easyocr_char == '.': recognized_text += easyocr_char else: digit_from_segments = detect_segments(digit_img_crop, brightness) recognized_text += digit_from_segments if digit_from_segments else easyocr_char logging.info(f"Recognized text: {recognized_text}") text = re.sub(r"[^\d\.]", "", recognized_text) if text.count('.') > 1: text = text.replace('.', '', text.count('.') - 1) if text and re.fullmatch(r"^\d*\.?\d*$", text): text = text.strip('.') if text == '': return None return text.lstrip('0') or '0' logging.info(f"Text '{recognized_text}' failed validation.") return None except Exception as e: logging.error(f"Seven-segment OCR failed: {str(e)}") return None def extract_weight_from_image(pil_img): """Extract weight from a digital scale image.""" try: img = np.array(pil_img) img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) save_debug_image(img, "00_input_image") img = correct_rotation(img) brightness = estimate_brightness(img) conf_threshold = 0.6 if brightness > 150 else (0.4 if brightness > 80 else 0.2) roi_img, roi_bbox = detect_roi(img) if roi_bbox: conf_threshold *= 1.05 if (roi_bbox[2] * roi_bbox[3]) > (img.shape[0] * img.shape[1] * 0.5) else 1.0 custom_result = custom_seven_segment_ocr(roi_img, roi_bbox) if custom_result and custom_result != '0': try: weight = float(custom_result) if 0.00001 <= weight <= 10000: logging.info(f"Custom OCR: {custom_result}, Confidence: 90.0%") return custom_result, 90.0 logging.warning(f"Custom OCR {custom_result} out of range.") except ValueError: logging.warning(f"Custom OCR '{custom_result}' invalid number.") logging.info("Custom OCR failed, using EasyOCR fallback.") preprocessed_roi = preprocess_image(roi_img) final_roi = cv2.adaptiveThreshold(preprocessed_roi, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, max(9, min(31, int(roi_img.shape[0] / 25) * 2 + 1)), 2) save_debug_image(final_roi, "08_fallback_thresh") results = easyocr_reader.readtext(final_roi, detail=1, paragraph=False, contrast_ths=0.05, adjust_contrast=1.2, text_threshold=0.15, mag_ratio=4.0, allowlist='0123456789. kglb', batch_size=2, y_ths=0.3) if not results: logging.info("First EasyOCR pass failed, trying fallback.") results = easyocr_reader.readtext(final_roi, detail=1, paragraph=False, contrast_ths=0.02, adjust_contrast=1.5, text_threshold=0.1, mag_ratio=5.0, allowlist='0123456789. kglb', batch_size=2, y_ths=0.3) save_debug_image(final_roi, "08_fallback_thresh_fallback") logging.info(f"EasyOCR results: {results}") candidates = [] unit = None for (bbox, text, conf) in results: if 'kg' in text.lower(): unit = 'kg' continue elif 'g' in text.lower(): unit = 'g' continue elif 'lb' in text.lower(): unit = 'lb' continue text = re.sub(r"[^\d\.]", "", text) if text.count('.') > 1: text = text.replace('.', '', text.count('.') - 1) text = text.strip('.') if re.fullmatch(r"^\d*\.?\d*$", text): try: weight = float(text) if unit == 'g': weight /= 1000 elif unit == 'lb': weight *= 0.453592 range_score = 1.5 if 0.00001 <= weight <= 10000 else 0.5 digit_count = len(text.replace('.', '')) digit_score = 1.4 if 1 <= digit_count <= 8 else 0.6 score = conf * range_score * digit_score if roi_bbox: x_roi, y_roi, w_roi, h_roi = roi_bbox roi_area = w_roi * h_roi x_min, y_min = int(min(b[0] for b in bbox)), int(min(b[1] for b in bbox)) x_max, y_max = int(max(b[0] for b in bbox)), int(max(b[1] for b in bbox)) bbox_area = (x_max - x_min) * (y_max - y_min) if roi_area > 0 and bbox_area / roi_area < 0.02: score *= 0.4 candidates.append((text, conf, score, unit)) logging.info(f"Candidate: '{text}', Unit: {unit or 'none'}, Conf: {conf}, Score: {score}") except ValueError: logging.warning(f"Could not convert '{text}' to float.") if not candidates and not roi_bbox: logging.info("No candidates, trying full image.") preprocessed_full = preprocess_image(img) final_full = cv2.adaptiveThreshold(preprocessed_full, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, max(9, min(31, int(img.shape[0] / 25) * 2 + 1)), 2) save_debug_image(final_full, "08_fallback_full") results = easyocr_reader.readtext(final_full, detail=1, paragraph=False, contrast_ths=0.05, adjust_contrast=1.5, text_threshold=0.15, mag_ratio=4.0, allowlist='0123456789. kglb', batch_size=2, y_ths=0.3) logging.info(f"Full image EasyOCR: {results}") for (bbox, text, conf) in results: if 'kg' in text.lower(): unit = 'kg' continue elif 'g' in text.lower(): unit = 'g' continue elif 'lb' in text.lower(): unit = 'lb' continue text = re.sub(r"[^\d\.]", "", text) if text.count('.') > 1: text = text.replace('.', '', text.count('.') - 1) text = text.strip('.') if re.fullmatch(r"^\d*\.?\d*$", text): try: weight = float(text) if unit == 'g': weight /= 1000 elif unit == 'lb': weight *= 0.453592 range_score = 1.2 if 0.00001 <= weight <= 10000 else 0.4 digit_count = len(text.replace('.', '')) digit_score = 1.2 if 1 <= digit_count <= 8 else 0.5 score = conf * range_score * digit_score * 0.7 candidates.append((text, conf, score, unit)) logging.info(f"Full image candidate: '{text}', Unit: {unit or 'none'}, Conf: {conf}, Score: {score}") except ValueError: logging.warning(f"Could not convert '{text}' to float (full image).") if not candidates: logging.info("No valid weight detected.") return "Not detected", 0.0 best_weight, best_conf, best_score, best_unit = max(candidates, key=lambda x: x[2]) if "." in best_weight: int_part, dec_part = best_weight.split(".") int_part = int_part.lstrip("0") or "0" dec_part = dec_part.rstrip('0') best_weight = f"{int_part}.{dec_part}" if dec_part else int_part else: best_weight = best_weight.lstrip('0') or "0" try: final_weight = float(best_weight) if final_weight < 0.00001 or final_weight > 10000: best_conf *= 0.4 elif final_weight == 0 and best_conf < 0.95: best_conf *= 0.5 except ValueError: pass logging.info(f"Final weight: {best_weight} kg, Confidence: {round(best_conf * 100, 2)}%, Unit: {best_unit or 'none'}") return best_weight, round(best_conf * 100, 2) except Exception as e: logging.error(f"Weight extraction failed: {str(e)}") return "Not detected", 0.0