import easyocr import numpy as np import cv2 import re # Initialize OCR reader once reader = easyocr.Reader(['en'], gpu=False) def extract_weight_from_image(pil_img): try: img = np.array(pil_img) # Convert to grayscale gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) # Resize for better accuracy gray = cv2.resize(gray, None, fx=2, fy=2, interpolation=cv2.INTER_LINEAR) # Gaussian blur to reduce noise blurred = cv2.GaussianBlur(gray, (3, 3), 0) # Invert colors: useful for LCD display images inverted = cv2.bitwise_not(blurred) # Normalize brightness norm_img = cv2.normalize(inverted, None, 0, 255, cv2.NORM_MINMAX) # Perform OCR result = reader.readtext(norm_img, detail=0) combined_text = " ".join(result) print("OCR Text:", combined_text) # Regex to detect numbers (e.g. 25, 75.45, 100.00) match = re.search(r"\b\d{1,4}(\.\d{1,2})?\b", combined_text) if match: return match.group(), 95.0 else: return "No weight detected", 0.0 except Exception as e: return f"Error: {str(e)}", 0.0