import gradio as gr import cv2 import numpy as np from paddleocr import PaddleOCR from datetime import datetime from pytz import timezone import re from PIL import Image # Initialize PaddleOCR ocr = PaddleOCR(use_angle_cls=True, lang='en') def detect_weight(image): try: if image is None: return "No image uploaded", "N/A", None image = image.convert("RGB") image_np = np.array(image) gray = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY) enhanced = cv2.equalizeHist(gray) rgb_image = cv2.cvtColor(enhanced, cv2.COLOR_GRAY2RGB) # OCR (without cls= argument for compatibility) result = ocr.ocr(rgb_image) best_match = None best_conf = 0 for line in result: for box in line: text, conf = box[1] match = re.search(r"\d+\.\d+", text) if match and conf > best_conf: best_match = match.group() best_conf = conf if best_match: now_ist = datetime.now(timezone('Asia/Kolkata')).strftime("%Y-%m-%d %H:%M:%S IST") return f"Weight: {best_match} kg (Confidence: {round(best_conf * 100, 2)}%)", now_ist, image else: return "No weight detected kg (Confidence: 0.0%)", "N/A", image except Exception as e: return f"Error: {str(e)}", "Error", None gr.Interface( fn=detect_weight, inputs=gr.Image(type="pil", label="Upload or Capture Weight Image"), outputs=[ gr.Text(label="Detected Weight"), gr.Text(label="Captured At (IST)"), gr.Image(label="Snapshot") ], title="Auto Weight Logger", description="Upload or capture a digital scale image. This app detects the weight automatically using AI." ).launch()