import easyocr import numpy as np import cv2 import re reader = easyocr.Reader(['en'], gpu=False) def extract_weight_from_image(pil_img): try: img = np.array(pil_img) # Resize if image is large if img.shape[1] > 1000: img = cv2.resize(img, (1000, int(img.shape[0] * 1000 / img.shape[1]))) # Convert to grayscale and upscale gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) gray = cv2.resize(gray, None, fx=4, fy=4, interpolation=cv2.INTER_CUBIC) gray = cv2.GaussianBlur(gray, (5, 5), 0) gray = cv2.equalizeHist(gray) # Thresholding _, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) # Invert if needed if np.mean(thresh > 127) < 0.5: thresh = cv2.bitwise_not(thresh) # OCR result = reader.readtext(thresh, detail=0) print("🔍 OCR Text:", result) combined_text = " ".join(result) # Extract weight match = re.search(r"(\d{1,4}(?:\.\d{1,2})?)", combined_text) if match: weight = match.group(1) return f"{weight} kg", 100.0 else: return "No weight detected kg", 0.0 except Exception as e: print("❌ OCR Error:", e) return f"Error: {str(e)}", 0.0