import pytesseract import numpy as np import cv2 import re import logging from datetime import datetime import os from PIL import Image # Set up logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') # Directory for debug images DEBUG_DIR = "debug_images" os.makedirs(DEBUG_DIR, exist_ok=True) def save_debug_image(img, filename_suffix, prefix=""): """Save image to debug directory with timestamp.""" timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f") filename = os.path.join(DEBUG_DIR, f"{prefix}{timestamp}_{filename_suffix}.png") if isinstance(img, Image.Image): img.save(filename) elif len(img.shape) == 3: cv2.imwrite(filename, cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) else: cv2.imwrite(filename, img) logging.info(f"Saved debug image: {filename}") def estimate_brightness(img): """Estimate image brightness.""" gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) return np.mean(gray) def preprocess_image(img): """Preprocess image for OCR with aggressive contrast and noise reduction.""" gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) brightness = estimate_brightness(img) # Aggressive CLAHE clahe_clip = 6.0 if brightness < 80 else 4.0 clahe = cv2.createCLAHE(clipLimit=clahe_clip, tileGridSize=(8, 8)) enhanced = clahe.apply(gray) save_debug_image(enhanced, "01_preprocess_clahe") # Minimal blur to preserve edges blurred = cv2.GaussianBlur(enhanced, (3, 3), 0) save_debug_image(blurred, "02_preprocess_blur") # Multi-scale thresholding block_size = max(9, min(25, int(img.shape[0] / 20) * 2 + 1)) thresh = cv2.adaptiveThreshold(blurred, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, block_size, 7) # Morphological operations kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3)) thresh = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=2) thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=3) save_debug_image(thresh, "03_preprocess_morph") return thresh, enhanced def correct_rotation(img): """Correct image rotation using edge detection.""" try: gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) edges = cv2.Canny(gray, 30, 100, apertureSize=3) lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=40, minLineLength=20, maxLineGap=10) if lines is not None: angles = [np.arctan2(line[0][3] - line[0][1], line[0][2] - line[0][0]) * 180 / np.pi for line in lines] angle = np.median(angles) if abs(angle) > 0.5: h, w = img.shape[:2] center = (w // 2, h // 2) M = cv2.getRotationMatrix2D(center, angle, 1.0) img = cv2.warpAffine(img, M, (w, h)) save_debug_image(img, "00_rotated_image") logging.info(f"Applied rotation: {angle:.2f} degrees") return img except Exception as e: logging.error(f"Rotation correction failed: {str(e)}") return img def detect_roi(img): """Detect region of interest with aggressive contour filtering.""" try: save_debug_image(img, "04_original") thresh, enhanced = preprocess_image(img) brightness_map = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) block_sizes = [max(9, min(25, int(img.shape[0] / s) * 2 + 1)) for s in [10, 15, 20]] valid_contours = [] img_area = img.shape[0] * img.shape[1] for block_size in block_sizes: temp_thresh = cv2.adaptiveThreshold(enhanced, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, block_size, 7) kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5)) temp_thresh = cv2.morphologyEx(temp_thresh, cv2.MORPH_CLOSE, kernel, iterations=3) save_debug_image(temp_thresh, f"05_roi_threshold_block{block_size}") contours, _ = cv2.findContours(temp_thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) for c in contours: area = cv2.contourArea(c) x, y, w, h = cv2.boundingRect(c) roi_brightness = np.mean(brightness_map[y:y+h, x:x+w]) aspect_ratio = w / h if (500 < area < (img_area * 0.5) and 0.5 <= aspect_ratio <= 6.0 and w > 80 and h > 40 and roi_brightness > 60): valid_contours.append((c, area * roi_brightness)) logging.debug(f"Contour (block {block_size}): Area={area}, Aspect={aspect_ratio:.2f}, Brightness={roi_brightness:.2f}") if valid_contours: contour, _ = max(valid_contours, key=lambda x: x[1]) x, y, w, h = cv2.boundingRect(contour) padding = max(25, min(70, int(min(w, h) * 0.5))) x, y = max(0, x - padding), max(0, y - padding) w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y) roi_img = img[y:y+h, x:x+w] save_debug_image(roi_img, "06_detected_roi") logging.info(f"Detected ROI: ({x}, {y}, {w}, {h})") return roi_img, (x, y, w, h) logging.info("No ROI found, using full image.") save_debug_image(img, "06_no_roi_fallback") return img, None except Exception as e: logging.error(f"ROI detection failed: {str(e)}") save_debug_image(img, "06_roi_error_fallback") return img, None def detect_digit_contour(digit_img, brightness): """Simplified contour-based digit recognition.""" try: h, w = digit_img.shape if h < 20 or w < 10: logging.debug("Digit image too small for contour detection.") return None # Normalize image pixel_count = np.sum(digit_img == 255) total_pixels = digit_img.size density = pixel_count / total_pixels if density < 0.1 or density > 0.8: return None # Contour analysis contours, _ = cv2.findContours(digit_img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) if not contours: return None contour = max(contours, key=cv2.contourArea) x, y, cw, ch = cv2.boundingRect(contour) if cw < 5 or ch < 10: return None aspect = cw / ch area_ratio = cv2.contourArea(contour) / (cw * ch) # Simplified digit patterns if aspect > 0.2 and aspect < 0.4 and area_ratio > 0.5: return '1' elif aspect > 0.5 and area_ratio > 0.6: if density > 0.5: return '8' elif density > 0.3: return '0' elif aspect > 0.4 and area_ratio > 0.5: if density > 0.4: return '3' elif density > 0.3: return '2' elif aspect > 0.3 and area_ratio > 0.4: return '5' if density > 0.3 else '7' elif aspect > 0.2 and area_ratio > 0.3: return '4' if density > 0.2 else '9' return None except Exception as e: logging.error(f"Contour digit detection failed: {str(e)}") return None def perform_ocr(img, roi_bbox): """Perform OCR with Tesseract and contour-based fallback.""" try: thresh, enhanced = preprocess_image(img) brightness = estimate_brightness(img) pil_img = Image.fromarray(enhanced) save_debug_image(pil_img, "07_ocr_input") # Tesseract with aggressive numeric config custom_config = r'--oem 3 --psm 7 -c tessedit_char_whitelist=0123456789.' text = pytesseract.image_to_string(pil_img, config=custom_config) logging.info(f"Tesseract raw output: {text}") # Clean and validate text = re.sub(r"[^\d\.]", "", text) if text.count('.') > 1: text = text.replace('.', '', text.count('.') - 1) text = text.strip('.') if text and re.fullmatch(r"^\d*\.?\d*$", text): text = text.lstrip('0') or '0' confidence = 98.0 if len(text.replace('.', '')) >= 3 else 95.0 logging.info(f"Validated Tesseract text: {text}, Confidence: {confidence:.2f}%") return text, confidence # Fallback to contour-based detection logging.info("Tesseract failed, using contour-based detection.") contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) digits_info = [] for c in contours: x, y, w, h = cv2.boundingRect(c) if w > 15 and h > 20 and 0.2 <= w/h <= 1.2: digits_info.append((x, x+w, y, y+h)) if digits_info: digits_info.sort(key=lambda x: x[0]) recognized_text = "" prev_x_max = -float('inf') for idx, (x_min, x_max, y_min, y_max) in enumerate(digits_info): x_min, y_min = max(0, x_min), max(0, y_min) x_max, y_max = min(thresh.shape[1], x_max), min(thresh.shape[0], y_max) if x_max <= x_min or y_max <= y_min: continue digit_crop = thresh[y_min:y_max, x_min:x_max] save_debug_image(digit_crop, f"08_digit_crop_{idx}") digit = detect_digit_contour(digit_crop, brightness) if digit: recognized_text += digit elif x_min - prev_x_max < 15 and prev_x_max != -float('inf'): recognized_text += '.' prev_x_max = x_max text = re.sub(r"[^\d\.]", "", recognized_text) if text.count('.') > 1: text = text.replace('.', '', text.count('.') - 1) text = text.strip('.') if text and re.fullmatch(r"^\d*\.?\d*$", text): text = text.lstrip('0') or '0' confidence = 92.0 if len(text.replace('.', '')) >= 3 else 90.0 logging.info(f"Validated contour text: {text}, Confidence: {confidence:.2f}%") return text, confidence logging.info("No valid digits detected.") return None, 0.0 except Exception as e: logging.error(f"OCR failed: {str(e)}") return None, 0.0 def extract_weight_from_image(pil_img): """Extract weight from a digital scale image.""" try: img = np.array(pil_img) img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) save_debug_image(img, "00_input_image") img = correct_rotation(img) brightness = estimate_brightness(img) conf_threshold = 0.9 if brightness > 100 else 0.7 roi_img, roi_bbox = detect_roi(img) if roi_bbox: conf_threshold *= 1.15 if (roi_bbox[2] * roi_bbox[3]) > (img.shape[0] * img.shape[1] * 0.3) else 1.0 result, confidence = perform_ocr(roi_img, roi_bbox) if result and confidence >= conf_threshold * 100: try: weight = float(result) if 0.01 <= weight <= 1000: logging.info(f"Detected weight: {result} kg, Confidence: {confidence:.2f}%") return result, confidence logging.warning(f"Weight {result} out of range.") except ValueError: logging.warning(f"Invalid weight format: {result}") logging.info("Primary OCR failed, using full image fallback.") result, confidence = perform_ocr(img, None) if result and confidence >= conf_threshold * 0.95 * 100: try: weight = float(result) if 0.01 <= weight <= 1000: logging.info(f"Full image weight: {result} kg, Confidence: {confidence:.2f}%") return result, confidence logging.warning(f"Full image weight {result} out of range.") except ValueError: logging.warning(f"Invalid full image weight format: {result}") logging.info("No valid weight detected.") return "Not detected", 0.0 except Exception as e: logging.error(f"Weight extraction failed: {str(e)}") return "Not detected", 0.0