import easyocr import numpy as np import cv2 import re reader = easyocr.Reader(['en'], gpu=False) def extract_weight_from_image(pil_img): try: img = np.array(pil_img) # Resize image for consistency if img.shape[1] > 1000: img = cv2.resize(img, (1000, int(img.shape[0] * 1000 / img.shape[1]))) # Convert to grayscale gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) # Upscale image gray = cv2.resize(gray, None, fx=4, fy=4, interpolation=cv2.INTER_LINEAR) # Histogram Equalization and slight blur gray = cv2.equalizeHist(gray) blurred = cv2.GaussianBlur(gray, (3, 3), 0) # Adaptive threshold thresh = cv2.adaptiveThreshold(blurred, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2) # Invert if needed white_ratio = np.mean(thresh > 127) if white_ratio < 0.5: thresh = cv2.bitwise_not(thresh) # OCR result = reader.readtext(thresh, detail=0) print("🧠 OCR Raw Output:", result) combined_text = " ".join(result).strip() # Extract number match = re.search(r"(\d{1,4}(?:\.\d{1,2})?)", combined_text) if match: weight = match.group(1) return f"{weight} kg", 100.0 else: return "No weight detected kg", 0.0 except Exception as e: print("❌ OCR Error:", e) return f"Error: {str(e)}", 0.0