import easyocr import numpy as np import cv2 import re import logging from mmocr.utils.ocr import MMOCR # Set up logging for debugging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') # Initialize OCR engines easyocr_reader = easyocr.Reader(['en'], gpu=False) try: mmocr_reader = MMOCR(det='DB_r18', recog='CRNN') except: mmocr_reader = None logging.warning("MMOCR initialization failed, falling back to EasyOCR only") def estimate_blur(img): """Estimate image blur using Laplacian variance""" gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) return cv2.Laplacian(gray, cv2.CV_64F).var() def enhance_image(img): try: # Convert to grayscale gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # Bilateral filter for noise reduction while preserving edges denoised = cv2.bilateralFilter(gray, d=9, sigmaColor=75, sigmaSpace=75) # CLAHE for contrast enhancement clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8)) contrast = clahe.apply(denoised) # Adaptive thresholding for uneven lighting thresh = cv2.adaptiveThreshold(contrast, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2) # Morphological operations to enhance text kernel = np.ones((3, 3), np.uint8) morphed = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=1) # Sharpen image sharpen_kernel = np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]]) sharpened = cv2.filter2D(morphed, -1, sharpen_kernel) # Dynamic resizing h, w = sharpened.shape target_size = 800 # Target max dimension for OCR scale_factor = min(target_size / max(h, w), 2.0) if max(h, w) < 300 else min(target_size / max(h, w), 1.0) if scale_factor != 1.0: sharpened = cv2.resize(sharpened, None, fx=scale_factor, fy=scale_factor, interpolation=cv2.INTER_CUBIC if scale_factor > 1 else cv2.INTER_AREA) return sharpened except Exception as e: logging.error(f"Image enhancement failed: {str(e)}") return img # Return original image as fallback def extract_weight_from_image(pil_img): try: img = np.array(pil_img) img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) # Estimate blur to adjust confidence threshold blur_score = estimate_blur(img) conf_threshold = 0.3 if blur_score < 100 else 0.5 # Lower threshold for blurry images # Preprocess image processed = enhance_image(img) # Initialize results best_weight = None best_conf = 0.0 # EasyOCR detection easyocr_results = easyocr_reader.readtext(processed, detail=1, paragraph=False) if not easyocr_results: # Fallback to original image if no results easyocr_results = easyocr_reader.readtext(img, detail=1, paragraph=False) # MMOCR detection (if available) mmocr_results = [] if mmocr_reader: try: mmocr_result = mmocr_reader.readtext(processed) mmocr_results = [(bbox, text, score) for bbox, text, score in mmocr_result] except: logging.warning("MMOCR processing failed, using EasyOCR results only") # Combine results all_results = easyocr_results + mmocr_results for (bbox, text, conf) in all_results: original_text = text text = text.lower().strip() # Fix common OCR errors text = text.replace(",", ".").replace(";", ".") text = text.replace("o", "0").replace("O", "0") text = text.replace("s", "5").replace("S", "5") text = text.replace("g", "9").replace("G", "6") text = text.replace("l", "1").replace("I", "1") text = text.replace("b", "8").replace("B", "8") text = text.replace("kgs", "").replace("kg", "").replace("k9", "").replace("k", "") text = re.sub(r"[^\d\.]", "", text) # Stricter regex for weight (0.0 to 9999.999) if re.fullmatch(r"\d{1,4}(\.\d{0,3})?", text): if conf > best_conf and conf > conf_threshold: best_weight = text best_conf = conf if not best_weight: logging.info("No valid weight detected") return "Not detected", 0.0 # Format output if "." in best_weight: int_part, dec_part = best_weight.split(".") int_part = int_part.lstrip("0") or "0" best_weight = f"{int_part}.{dec_part.rstrip('0')}" else: best_weight = best_weight.lstrip("0") or "0" return best_weight, round(best_conf * 100, 2) except Exception as e: logging.error(f"Weight extraction failed: {str(e)}") return "Not detected", 0.0