import easyocr import numpy as np import cv2 import re reader = easyocr.Reader(['en'], gpu=False) def extract_weight_from_image(pil_img): try: img = np.array(pil_img) # Resize if image is too large if img.shape[1] > 1000: img = cv2.resize(img, (1000, int(img.shape[0] * 1000 / img.shape[1]))) # Preprocessing gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) gray = cv2.resize(gray, None, fx=2, fy=2, interpolation=cv2.INTER_CUBIC) gray = cv2.equalizeHist(gray) blurred = cv2.GaussianBlur(gray, (3, 3), 0) thresh = cv2.adaptiveThreshold( blurred, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 11, 2 ) # OCR result = reader.readtext(thresh, detail=0) combined_text = " ".join(result) print("OCR Text:", combined_text) # Regex to match numbers with optional 'kg' match = re.search(r"(\d{1,4}(?:\.\d{1,2})?)\s*(kg|KG|Kg)?", combined_text) if match: weight = match.group(1) return f"{weight} kg", 95.0 else: return "No weight detected kg", 0.0 except Exception as e: return f"Error: {str(e)}", 0.0