import easyocr import numpy as np import cv2 import re reader = easyocr.Reader(['en'], gpu=False) def extract_weight_from_image(pil_img): try: img = np.array(pil_img) # Resize for consistency if img.shape[1] > 1000: img = cv2.resize(img, (1000, int(img.shape[0] * 1000 / img.shape[1]))) # Preprocessing for 7-segment digital font gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) gray = cv2.resize(gray, None, fx=3, fy=3, interpolation=cv2.INTER_LINEAR) blur = cv2.GaussianBlur(gray, (3, 3), 0) _, thresh = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) # Optional inversion for black background with white digits white_pct = np.mean(thresh > 127) if white_pct < 0.5: thresh = cv2.bitwise_not(thresh) # OCR result = reader.readtext(thresh, detail=0) combined_text = " ".join(result).strip() print("OCR Text:", combined_text) # Match number like 25, 65.2, 18.89 etc. match = re.search(r"(\d{1,4}(?:\.\d{1,2})?)", combined_text) if match: weight = match.group(1) return f"{weight} kg", 100.0 else: return "No weight detected kg", 0.0 except Exception as e: return f"Error: {str(e)}", 0.0