Spaces:
Sleeping
Sleeping
File size: 1,069 Bytes
65ed4c1 363a646 65ed4c1 363a646 65ed4c1 363a646 65ed4c1 363a646 65ed4c1 363a646 65ed4c1 363a646 65ed4c1 363a646 65ed4c1 363a646 65ed4c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
import easyocr
import numpy as np
import re
import cv2
reader = easyocr.Reader(['en'], gpu=False)
def extract_weight_from_image(pil_img):
try:
img = np.array(pil_img)
# Convert to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
# Resize to make characters larger
resized = cv2.resize(gray, None, fx=2, fy=2, interpolation=cv2.INTER_CUBIC)
# Apply blur and threshold to improve text clarity
blurred = cv2.GaussianBlur(resized, (5, 5), 0)
_, thresh = cv2.threshold(blurred, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
# OCR detection
result = reader.readtext(thresh, detail=0)
combined_text = " ".join(result)
print("OCR Text:", combined_text)
# Use regex to extract weight like 52.30, 002.50 etc.
match = re.search(r"\b\d{1,4}\.?\d{0,2}\b", combined_text)
if match:
return match.group(), 95.0
else:
return "No weight detected", 0.0
except Exception as e:
return f"Error: {str(e)}", 0.0
|