File size: 10,209 Bytes
0507081
1a5f8fd
 
1d1e3da
 
 
1a5f8fd
 
1d1e3da
 
1a5f8fd
 
1d1e3da
 
 
 
1a5f8fd
49bdc4d
 
 
 
 
 
1a5f8fd
 
 
 
 
 
1d1e3da
 
1a5f8fd
1d1e3da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5699ebb
1d1e3da
 
 
 
 
 
 
 
 
 
 
 
 
a481416
49bdc4d
 
 
 
 
496e98a
49bdc4d
 
 
 
496e98a
49bdc4d
496e98a
49bdc4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
496e98a
49bdc4d
 
 
 
 
 
 
 
 
 
 
 
1a5f8fd
49bdc4d
1a5f8fd
49bdc4d
 
 
 
1a5f8fd
 
49bdc4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a5f8fd
 
 
 
0507081
1a5f8fd
0507081
49bdc4d
1d1e3da
5699ebb
0507081
1d1e3da
1a5f8fd
49bdc4d
1a5f8fd
 
 
5699ebb
1a5f8fd
49bdc4d
0c65757
5699ebb
1d1e3da
 
49bdc4d
0c65757
1d1e3da
 
1a5f8fd
1d1e3da
 
 
49bdc4d
1d1e3da
5699ebb
1d1e3da
 
5699ebb
1d1e3da
 
58fea44
 
 
 
1d1e3da
 
 
 
 
 
 
06308c8
1a5f8fd
0507081
 
1d1e3da
06308c8
0507081
58fea44
0507081
06308c8
0507081
 
 
06308c8
1d1e3da
 
 
 
0507081
1d1e3da
 
 
 
 
 
 
 
 
 
 
 
 
49bdc4d
1d1e3da
 
0c65757
49bdc4d
1d1e3da
06308c8
1a5f8fd
496e98a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import gradio as gr
import cv2
import pytesseract
from PIL import Image
import io
import base64
from datetime import datetime
import pytz
from simple_salesforce import Salesforce
import logging
import numpy as np
import os

# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

# Configure Tesseract path for Hugging Face
try:
    pytesseract.pytesseract.tesseract_cmd = '/usr/bin/tesseract'
    pytesseract.get_tesseract_version()  # Test Tesseract availability
    logging.info("Tesseract is available")
except Exception as e:
    logging.error(f"Tesseract not found or misconfigured: {str(e)}")

# Salesforce configuration (use environment variables in production)
SF_USERNAME = os.getenv("SF_USERNAME", "your_salesforce_username")
SF_PASSWORD = os.getenv("SF_PASSWORD", "your_salesforce_password")
SF_SECURITY_TOKEN = os.getenv("SF_SECURITY_TOKEN", "your_salesforce_security_token")
SF_DOMAIN = os.getenv("SF_DOMAIN", "login")  # or "test" for sandbox

def connect_to_salesforce():
    """Connect to Salesforce with error handling."""
    try:
        sf = Salesforce(username=SF_USERNAME, password=SF_PASSWORD, security_token=SF_SECURITY_TOKEN, domain=SF_DOMAIN)
        logging.info("Connected to Salesforce successfully")
        return sf
    except Exception as e:
        logging.error(f"Salesforce connection failed: {str(e)}")
        return None

def resize_image(img, max_size_mb=5):
    """Resize image to ensure size < 5MB while preserving quality."""
    try:
        img_bytes = io.BytesIO()
        img.save(img_bytes, format="PNG")
        size_mb = len(img_bytes.getvalue()) / (1024 * 1024)
        if size_mb <= max_size_mb:
            return img, img_bytes.getvalue()
        
        scale = 0.9
        while size_mb > max_size_mb:
            w, h = img.size
            img = img.resize((int(w * scale), int(h * scale)), Image.Resampling.LANCZOS)
            img_bytes = io.BytesIO()
            img.save(img_bytes, format="PNG")
            size_mb = len(img_bytes.getvalue()) / (1024 * 1024)
            scale *= 0.9
        logging.info(f"Resized image to {size_mb:.2f} MB")
        return img, img_bytes.getvalue()
    except Exception as e:
        logging.error(f"Image resizing failed: {str(e)}")
        return img, None

def preprocess_image(img_cv):
    """Preprocess image for OCR: enhance contrast, reduce noise, and apply adaptive thresholding."""
    try:
        # Convert to grayscale
        gray = cv2.cvtColor(img_cv, cv2.COLOR_BGR2GRAY)
        # Enhance contrast with CLAHE (Contrast Limited Adaptive Histogram Equalization)
        clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8, 8))
        contrast = clahe.apply(gray)
        # Reduce noise with Gaussian blur
        blurred = cv2.GaussianBlur(contrast, (5, 5), 0)
        # Apply adaptive thresholding for better binary image representation
        thresh = cv2.adaptiveThreshold(blurred, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2)
        # Sharpen the image to bring out more details in the numbers
        kernel = np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]])
        sharpened = cv2.filter2D(thresh, -1, kernel)
        return sharpened
    except Exception as e:
        logging.error(f"Image preprocessing failed: {str(e)}")
        return gray

def detect_roi(img_cv):
    """Detect the region of interest (ROI) containing the weight display."""
    try:
        # Convert to grayscale for edge detection
        gray = cv2.cvtColor(img_cv, cv2.COLOR_BGR2GRAY)
        # Apply edge detection
        edges = cv2.Canny(gray, 50, 150)
        # Find contours
        contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
        if not contours:
            logging.warning("No contours detected for ROI")
            return img_cv  # Return full image if no contours found
        
        # Find the largest contour (assuming itโ€™s the display)
        largest_contour = max(contours, key=cv2.contourArea)
        x, y, w, h = cv2.boundingRect(largest_contour)
        # Add padding to the detected region to ensure weight is fully captured
        padding = 10
        x = max(0, x - padding)
        y = max(0, y - padding)
        w = min(img_cv.shape[1] - x, w + 2 * padding)
        h = min(img_cv.shape[0] - y, h + 2 * padding)
        roi = img_cv[y:y+h, x:x+w]
        logging.info(f"ROI detected at ({x}, {y}, {w}, {h})")
        return roi
    except Exception as e:
        logging.error(f"ROI detection failed: {str(e)}")
        return img_cv

def extract_weight(img):
    """Extract weight from image using Tesseract OCR with multiple PSM modes."""
    try:
        if img is None:
            logging.error("No image provided for OCR")
            return "Not detected", 0.0
        
        # Convert PIL image to OpenCV format
        img_cv = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
        # Detect ROI
        roi_img = detect_roi(img_cv)
        # Preprocess the ROI
        processed_img = preprocess_image(roi_img)
        
        # Try multiple PSM modes for better detection
        psm_modes = [
            ('--psm 7 digits', 'Single line, digits only'),
            ('--psm 6 digits', 'Single block, digits only'),
            ('--psm 10 digits', 'Single character, digits only'),
            ('--psm 8 digits', 'Single word, digits only')
        ]
        
        for config, desc in psm_modes:
            text = pytesseract.image_to_string(processed_img, config=config)
            logging.info(f"OCR attempt with {desc}: Raw text = '{text}'")
            weight = ''.join(filter(lambda x: x in '0123456789.', text.strip()))
            try:
                weight_float = float(weight)
                if weight_float >= 0:  # Allow zero weights
                    confidence = 95.0  # Simplified confidence for valid numbers
                    logging.info(f"Weight detected: {weight} (Confidence: {confidence:.2f}%)")
                    return weight, confidence
            except ValueError:
                logging.warning(f"Invalid number format: {weight}")
                continue
        
        logging.error("All OCR attempts failed to detect a valid weight")
        return "Not detected", 0.0
    except Exception as e:
        logging.error(f"OCR processing failed: {str(e)}")
        return "Not detected", 0.0

def process_image(img):
    """Process uploaded or captured image and extract weight."""
    if img is None:
        logging.error("No image provided")
        return "No image uploaded", None, None, None, gr.update(visible=False), gr.update(visible=False)
    
    ist_time = datetime.now(pytz.timezone("Asia/Kolkata")).strftime("%d-%m-%Y %I:%M:%S %p")
    img, img_bytes = resize_image(img)
    if img_bytes is None:
        logging.error("Image resizing failed")
        return "Image processing failed", ist_time, img, None, gr.update(visible=False), gr.update(visible=False)
    
    weight, confidence = extract_weight(img)
    
    if weight == "Not detected" or confidence < 95.0:
        logging.warning(f"Weight detection failed: {weight} (Confidence: {confidence:.2f}%)")
        return f"{weight} (Confidence: {confidence:.2f}%)", ist_time, img, None, gr.update(visible=True), gr.update(visible=False)
    
    img_buffer = io.BytesIO(img_bytes)
    img_base64 = base64.b64encode(img_buffer.getvalue()).decode()
    logging.info(f"Weight detected successfully: {weight} kg")
    return f"{weight} kg (Confidence: {confidence:.2f}%)", ist_time, img, img_base64, gr.update(visible=True), gr.update(visible=True)

def save_to_salesforce(weight_text, img_base64):
    """Save weight and image to Salesforce Weight_Log__c object."""
    try:
        sf = connect_to_salesforce()
        if sf is None:
            logging.error("Salesforce connection failed")
            return "Failed to connect to Salesforce"
        
        weight = float(weight_text.split(" ")[0])
        ist_time = datetime.now(pytz.timezone("Asia/Kolkata")).strftime("%Y-%m-%d %H:%M:%S")
        
        record = {
            "Name": f"Weight_Log_{ist_time}",
            "Captured_Weight__c": weight,
            "Captured_At__c": ist_time,
            "Snapshot_Image__c": img_base64,
            "Status__c": "Confirmed"
        }
        result = sf.Weight_Log__c.create(record)
        logging.info(f"Salesforce record created: {result}")
        return "Successfully saved to Salesforce"
    except Exception as e:
        logging.error(f"Salesforce save failed: {str(e)}")
        return f"Failed to save to Salesforce: {str(e)}"

# Gradio Interface
with gr.Blocks(title="โš–๏ธ Auto Weight Logger") as demo:
    gr.Markdown("## โš–๏ธ Auto Weight Logger")
    gr.Markdown("๐Ÿ“ท Upload or capture an image of a digital weight scale (max 5MB).")

    with gr.Row():
        image_input = gr.Image(type="pil", label="Upload / Capture Image", sources=["upload", "webcam"])
        output_weight = gr.Textbox(label="โš–๏ธ Detected Weight (in kg)")

    with gr.Row():
        timestamp = gr.Textbox(label="๐Ÿ•’ Captured At (IST)")
        snapshot = gr.Image(label="๐Ÿ“ธ Snapshot Image")

    with gr.Row():
        confirm_button = gr.Button("โœ… Confirm and Save to Salesforce", visible=False)
        status = gr.Textbox(label="Save Status", visible=False)

    submit = gr.Button("๐Ÿ” Detect Weight")
    submit.click(
        fn=process_image,
        inputs=image_input,
        outputs=[output_weight, timestamp, snapshot, gr.State(), confirm_button, status]
    )
    confirm_button.click(
        fn=save_to_salesforce,
        inputs=[output_weight, gr.State()],
        outputs=status
    )

    gr.Markdown("""
    ### Instructions
    - Upload a clear, well-lit image of a digital weight scale display (7-segment font preferred).
    - Ensure the image is < 5MB (automatically resized if larger).
    - Review the detected weight and click 'Confirm and Save to Salesforce' to log the data.
    - Works on desktop and mobile browsers.
    - If weight detection fails, check the image for glare, low contrast, or non-numeric characters and try again.
    """)

if __name__ == "__main__":
    demo.launch()