geethareddy's picture
Update app.py
46a56d8 verified
raw
history blame
10.2 kB
import gradio as gr
import cv2
import pytesseract
from PIL import Image
import io
import base64
from datetime import datetime
import pytz
from simple_salesforce import Salesforce
import logging
import numpy as np
import os
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Configure Tesseract path for Hugging Face
try:
pytesseract.pytesseract.tesseract_cmd = '/usr/bin/tesseract'
pytesseract.get_tesseract_version() # Test Tesseract availability
logging.info("Tesseract is available")
except Exception as e:
logging.error(f"Tesseract not found or misconfigured: {str(e)}")
# Salesforce configuration (use environment variables in production)
SF_USERNAME = os.getenv("SF_USERNAME", "your_salesforce_username")
SF_PASSWORD = os.getenv("SF_PASSWORD", "your_salesforce_password")
SF_SECURITY_TOKEN = os.getenv("SF_SECURITY_TOKEN", "your_salesforce_security_token")
SF_DOMAIN = os.getenv("SF_DOMAIN", "login") # or "test" for sandbox
def connect_to_salesforce():
"""Connect to Salesforce with error handling."""
try:
sf = Salesforce(username=SF_USERNAME, password=SF_PASSWORD, security_token=SF_SECURITY_TOKEN, domain=SF_DOMAIN)
logging.info("Connected to Salesforce successfully")
return sf
except Exception as e:
logging.error(f"Salesforce connection failed: {str(e)}")
return None
def resize_image(img, max_size_mb=5):
"""Resize image to ensure size < 5MB while preserving quality."""
try:
img_bytes = io.BytesIO()
img.save(img_bytes, format="PNG")
size_mb = len(img_bytes.getvalue()) / (1024 * 1024)
if size_mb <= max_size_mb:
return img, img_bytes.getvalue()
scale = 0.9
while size_mb > max_size_mb:
w, h = img.size
img = img.resize((int(w * scale), int(h * scale)), Image.Resampling.LANCZOS)
img_bytes = io.BytesIO()
img.save(img_bytes, format="PNG")
size_mb = len(img_bytes.getvalue()) / (1024 * 1024)
scale *= 0.9
logging.info(f"Resized image to {size_mb:.2f} MB")
return img, img_bytes.getvalue()
except Exception as e:
logging.error(f"Image resizing failed: {str(e)}")
return img, None
def preprocess_image(img_cv):
"""Preprocess image for OCR: enhance contrast, reduce noise, and apply adaptive thresholding."""
try:
# Convert to grayscale
gray = cv2.cvtColor(img_cv, cv2.COLOR_BGR2GRAY)
# Enhance contrast with CLAHE (Contrast Limited Adaptive Histogram Equalization)
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8, 8))
contrast = clahe.apply(gray)
# Reduce noise with Gaussian blur
blurred = cv2.GaussianBlur(contrast, (5, 5), 0)
# Apply adaptive thresholding for better binary image representation
thresh = cv2.adaptiveThreshold(blurred, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2)
# Sharpen the image to bring out more details in the numbers
kernel = np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]])
sharpened = cv2.filter2D(thresh, -1, kernel)
return sharpened
except Exception as e:
logging.error(f"Image preprocessing failed: {str(e)}")
return gray
def detect_roi(img_cv):
"""Detect the region of interest (ROI) containing the weight display."""
try:
# Convert to grayscale for edge detection
gray = cv2.cvtColor(img_cv, cv2.COLOR_BGR2GRAY)
# Apply edge detection
edges = cv2.Canny(gray, 50, 150)
# Find contours
contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if not contours:
logging.warning("No contours detected for ROI")
return img_cv # Return full image if no contours found
# Find the largest contour (assuming itโ€™s the display)
largest_contour = max(contours, key=cv2.contourArea)
x, y, w, h = cv2.boundingRect(largest_contour)
# Add padding to the detected region to ensure weight is fully captured
padding = 10
x = max(0, x - padding)
y = max(0, y - padding)
w = min(img_cv.shape[1] - x, w + 2 * padding)
h = min(img_cv.shape[0] - y, h + 2 * padding)
roi = img_cv[y:y+h, x:x+w]
logging.info(f"ROI detected at ({x}, {y}, {w}, {h})")
return roi
except Exception as e:
logging.error(f"ROI detection failed: {str(e)}")
return img_cv
def extract_weight(img):
"""Extract weight from image using Tesseract OCR with multiple PSM modes."""
try:
if img is None:
logging.error("No image provided for OCR")
return "Not detected", 0.0
# Convert PIL image to OpenCV format
img_cv = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
# Detect ROI
roi_img = detect_roi(img_cv)
# Preprocess the ROI
processed_img = preprocess_image(roi_img)
# Try multiple PSM modes for better detection
psm_modes = [
('--psm 7 digits', 'Single line, digits only'),
('--psm 6 digits', 'Single block, digits only'),
('--psm 10 digits', 'Single character, digits only'),
('--psm 8 digits', 'Single word, digits only')
]
for config, desc in psm_modes:
text = pytesseract.image_to_string(processed_img, config=config)
logging.info(f"OCR attempt with {desc}: Raw text = '{text}'")
weight = ''.join(filter(lambda x: x in '0123456789.', text.strip()))
try:
weight_float = float(weight)
if weight_float >= 0: # Allow zero weights
confidence = 95.0 # Simplified confidence for valid numbers
logging.info(f"Weight detected: {weight} (Confidence: {confidence:.2f}%)")
return weight, confidence
except ValueError:
logging.warning(f"Invalid number format: {weight}")
continue
logging.error("All OCR attempts failed to detect a valid weight")
return "Not detected", 0.0
except Exception as e:
logging.error(f"OCR processing failed: {str(e)}")
return "Not detected", 0.0
def process_image(img):
"""Process uploaded or captured image and extract weight."""
if img is None:
logging.error("No image provided")
return "No image uploaded", None, None, None, gr.update(visible=False), gr.update(visible=False)
ist_time = datetime.now(pytz.timezone("Asia/Kolkata")).strftime("%d-%m-%Y %I:%M:%S %p")
img, img_bytes = resize_image(img)
if img_bytes is None:
logging.error("Image resizing failed")
return "Image processing failed", ist_time, img, None, gr.update(visible=False), gr.update(visible=False)
weight, confidence = extract_weight(img)
if weight == "Not detected" or confidence < 95.0:
logging.warning(f"Weight detection failed: {weight} (Confidence: {confidence:.2f}%)")
return f"{weight} (Confidence: {confidence:.2f}%)", ist_time, img, None, gr.update(visible=True), gr.update(visible=False)
img_buffer = io.BytesIO(img_bytes)
img_base64 = base64.b64encode(img_buffer.getvalue()).decode()
logging.info(f"Weight detected successfully: {weight} kg")
return f"{weight} kg (Confidence: {confidence:.2f}%)", ist_time, img, img_base64, gr.update(visible=True), gr.update(visible=True)
def save_to_salesforce(weight_text, img_base64):
"""Save weight and image to Salesforce Weight_Log__c object."""
try:
sf = connect_to_salesforce()
if sf is None:
logging.error("Salesforce connection failed")
return "Failed to connect to Salesforce"
weight = float(weight_text.split(" ")[0])
ist_time = datetime.now(pytz.timezone("Asia/Kolkata")).strftime("%Y-%m-%d %H:%M:%S")
record = {
"Name": f"Weight_Log_{ist_time}",
"Captured_Weight__c": weight,
"Captured_At__c": ist_time,
"Snapshot_Image__c": img_base64,
"Status__c": "Confirmed"
}
result = sf.Weight_Log__c.create(record)
logging.info(f"Salesforce record created: {result}")
return "Successfully saved to Salesforce"
except Exception as e:
logging.error(f"Salesforce save failed: {str(e)}")
return f"Failed to save to Salesforce: {str(e)}"
# Gradio Interface
with gr.Blocks(title="โš–๏ธ Auto Weight Logger") as demo:
gr.Markdown("## โš–๏ธ Auto Weight Logger")
gr.Markdown("๐Ÿ“ท Upload or capture an image of a digital weight scale (max 5MB).")
with gr.Row():
image_input = gr.Image(type="pil", label="Upload / Capture Image", sources=["upload", "webcam"])
output_weight = gr.Textbox(label="โš–๏ธ Detected Weight (in kg)")
with gr.Row():
timestamp = gr.Textbox(label="๐Ÿ•’ Captured At (IST)")
snapshot = gr.Image(label="๐Ÿ“ธ Snapshot Image")
with gr.Row():
confirm_button = gr.Button("โœ… Confirm and Save to Salesforce", visible=False)
status = gr.Textbox(label="Save Status", visible=False)
submit = gr.Button("๐Ÿ” Detect Weight")
submit.click(
fn=process_image,
inputs=image_input,
outputs=[output_weight, timestamp, snapshot, gr.State(), confirm_button, status]
)
confirm_button.click(
fn=save_to_salesforce,
inputs=[output_weight, gr.State()],
outputs=status
)
gr.Markdown("""
### Instructions
- Upload a clear, well-lit image of a digital weight scale display (7-segment font preferred).
- Ensure the image is < 5MB (automatically resized if larger).
- Review the detected weight and click 'Confirm and Save to Salesforce' to log the data.
- Works on desktop and mobile browsers.
- If weight detection fails, check the image for glare, low contrast, or non-numeric characters and try again.
""")
if __name__ == "__main__":
demo.launch()