Spaces:
Sleeping
Sleeping
AutoWeightLogger1/ocr_engine.py
Browse files- ocr_engine.py +0 -41
ocr_engine.py
DELETED
@@ -1,41 +0,0 @@
|
|
1 |
-
import cv2
|
2 |
-
import numpy as np
|
3 |
-
import re
|
4 |
-
from PIL import Image
|
5 |
-
|
6 |
-
def extract_weight_from_image(pil_img):
|
7 |
-
try:
|
8 |
-
img = np.array(pil_img)
|
9 |
-
|
10 |
-
# Convert to grayscale
|
11 |
-
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
|
12 |
-
|
13 |
-
# Threshold image
|
14 |
-
_, thresh = cv2.threshold(gray, 200, 255, cv2.THRESH_BINARY)
|
15 |
-
|
16 |
-
# Invert if needed
|
17 |
-
if np.mean(thresh > 127) < 0.5:
|
18 |
-
thresh = cv2.bitwise_not(thresh)
|
19 |
-
|
20 |
-
# Resize to make digits bigger
|
21 |
-
scale_factor = 4
|
22 |
-
resized = cv2.resize(thresh, None, fx=scale_factor, fy=scale_factor, interpolation=cv2.INTER_LINEAR)
|
23 |
-
|
24 |
-
# OCR-style region crop: focus on left part of display
|
25 |
-
height, width = resized.shape
|
26 |
-
digit_region = resized[0:height, 0:int(width * 0.7)] # ignore 'kg'
|
27 |
-
|
28 |
-
# Use pytesseract as fallback OCR for just digits
|
29 |
-
import pytesseract
|
30 |
-
config = "--psm 7 -c tessedit_char_whitelist=0123456789."
|
31 |
-
result = pytesseract.image_to_string(digit_region, config=config)
|
32 |
-
print("Raw OCR:", result)
|
33 |
-
|
34 |
-
match = re.search(r"(\d{1,4}(?:\.\d{1,2})?)", result)
|
35 |
-
if match:
|
36 |
-
return f"{match.group()} kg", 100.0
|
37 |
-
else:
|
38 |
-
return "No weight detected kg", 0.0
|
39 |
-
|
40 |
-
except Exception as e:
|
41 |
-
return f"Error: {str(e)}", 0.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|