Spaces:
Sleeping
Sleeping
Update ocr_engine.py
Browse files- ocr_engine.py +200 -119
ocr_engine.py
CHANGED
@@ -32,32 +32,30 @@ def estimate_brightness(img):
|
|
32 |
return np.mean(gray)
|
33 |
|
34 |
def preprocess_image(img):
|
35 |
-
"""Preprocess image with
|
36 |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
37 |
brightness = estimate_brightness(img)
|
38 |
|
39 |
-
#
|
40 |
-
clahe_clip =
|
41 |
clahe = cv2.createCLAHE(clipLimit=clahe_clip, tileGridSize=(8, 8))
|
42 |
enhanced = clahe.apply(gray)
|
43 |
save_debug_image(enhanced, "01_preprocess_clahe")
|
44 |
|
45 |
-
#
|
46 |
-
|
47 |
-
blurred = cv2.bilateralFilter(enhanced, blur_diameter, 75, 75)
|
48 |
save_debug_image(blurred, "02_preprocess_blur")
|
49 |
|
50 |
-
# Dynamic
|
51 |
-
block_size = max(
|
52 |
thresh = cv2.adaptiveThreshold(
|
53 |
blurred, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
54 |
-
cv2.THRESH_BINARY_INV, block_size,
|
55 |
)
|
56 |
|
57 |
-
#
|
58 |
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
|
59 |
-
thresh = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=
|
60 |
-
thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=4)
|
61 |
save_debug_image(thresh, "03_preprocess_morph")
|
62 |
return thresh, enhanced
|
63 |
|
@@ -65,12 +63,12 @@ def correct_rotation(img):
|
|
65 |
"""Correct image rotation using edge detection."""
|
66 |
try:
|
67 |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
68 |
-
edges = cv2.Canny(gray,
|
69 |
-
lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=
|
70 |
if lines is not None:
|
71 |
angles = [np.arctan2(line[0][3] - line[0][1], line[0][2] - line[0][0]) * 180 / np.pi for line in lines]
|
72 |
angle = np.median(angles)
|
73 |
-
if abs(angle) > 0.
|
74 |
h, w = img.shape[:2]
|
75 |
center = (w // 2, h // 2)
|
76 |
M = cv2.getRotationMatrix2D(center, angle, 1.0)
|
@@ -83,22 +81,22 @@ def correct_rotation(img):
|
|
83 |
return img
|
84 |
|
85 |
def detect_roi(img):
|
86 |
-
"""Detect region of interest with
|
87 |
try:
|
88 |
save_debug_image(img, "04_original")
|
89 |
thresh, enhanced = preprocess_image(img)
|
90 |
brightness_map = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
91 |
-
block_sizes = [max(
|
92 |
valid_contours = []
|
93 |
img_area = img.shape[0] * img.shape[1]
|
94 |
|
95 |
for block_size in block_sizes:
|
96 |
temp_thresh = cv2.adaptiveThreshold(
|
97 |
enhanced, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
98 |
-
cv2.THRESH_BINARY_INV, block_size,
|
99 |
)
|
100 |
-
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (
|
101 |
-
temp_thresh = cv2.morphologyEx(temp_thresh, cv2.MORPH_CLOSE, kernel, iterations=
|
102 |
save_debug_image(temp_thresh, f"05_roi_threshold_block{block_size}")
|
103 |
contours, _ = cv2.findContours(temp_thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
104 |
|
@@ -107,15 +105,15 @@ def detect_roi(img):
|
|
107 |
x, y, w, h = cv2.boundingRect(c)
|
108 |
roi_brightness = np.mean(brightness_map[y:y+h, x:x+w])
|
109 |
aspect_ratio = w / h
|
110 |
-
if (
|
111 |
-
0.
|
112 |
valid_contours.append((c, area * roi_brightness))
|
113 |
logging.debug(f"Contour (block {block_size}): Area={area}, Aspect={aspect_ratio:.2f}, Brightness={roi_brightness:.2f}")
|
114 |
|
115 |
if valid_contours:
|
116 |
contour, _ = max(valid_contours, key=lambda x: x[1])
|
117 |
x, y, w, h = cv2.boundingRect(contour)
|
118 |
-
padding = max(
|
119 |
x, y = max(0, x - padding), max(0, y - padding)
|
120 |
w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y)
|
121 |
roi_img = img[y:y+h, x:x+w]
|
@@ -132,115 +130,196 @@ def detect_roi(img):
|
|
132 |
return img, None
|
133 |
|
134 |
def detect_digit_template(digit_img, brightness):
|
135 |
-
"""Digit recognition
|
136 |
try:
|
137 |
h, w = digit_img.shape
|
138 |
-
if h <
|
139 |
-
logging.debug("Digit image too small for template matching.")
|
140 |
return None
|
141 |
|
142 |
-
#
|
143 |
digit_templates = {
|
144 |
-
'0':
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
}
|
198 |
|
199 |
-
#
|
200 |
-
|
201 |
-
digit_img_resized = cv2.resize(digit_img, target_size, interpolation=cv2.INTER_AREA)
|
202 |
-
digit_img_resized = (digit_img_resized > 128).astype(np.float32) # Binarize
|
203 |
-
|
204 |
best_match, best_score = None, -1
|
205 |
-
for
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
logging.debug(f"Template match: {best_match}, Score: {best_score:.2f}")
|
216 |
-
return best_match if best_score > 0.
|
217 |
except Exception as e:
|
218 |
logging.error(f"Template digit detection failed: {str(e)}")
|
219 |
return None
|
220 |
|
221 |
def perform_ocr(img, roi_bbox):
|
222 |
-
"""Perform OCR with Tesseract and template
|
223 |
try:
|
224 |
thresh, enhanced = preprocess_image(img)
|
225 |
brightness = estimate_brightness(img)
|
226 |
pil_img = Image.fromarray(enhanced)
|
227 |
save_debug_image(pil_img, "07_ocr_input")
|
228 |
|
229 |
-
#
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
text =
|
238 |
-
|
239 |
-
|
240 |
-
text = text.
|
241 |
-
|
242 |
-
|
243 |
-
|
|
|
|
|
244 |
|
245 |
# Fallback to template-based detection
|
246 |
logging.info("Tesseract failed, using template-based detection.")
|
@@ -248,7 +327,7 @@ def perform_ocr(img, roi_bbox):
|
|
248 |
digits_info = []
|
249 |
for c in contours:
|
250 |
x, y, w, h = cv2.boundingRect(c)
|
251 |
-
if w >
|
252 |
digits_info.append((x, x+w, y, y+h))
|
253 |
|
254 |
if digits_info:
|
@@ -265,7 +344,7 @@ def perform_ocr(img, roi_bbox):
|
|
265 |
digit = detect_digit_template(digit_crop, brightness)
|
266 |
if digit:
|
267 |
recognized_text += digit
|
268 |
-
elif x_min - prev_x_max <
|
269 |
recognized_text += '.'
|
270 |
prev_x_max = x_max
|
271 |
|
@@ -293,29 +372,31 @@ def extract_weight_from_image(pil_img):
|
|
293 |
save_debug_image(img, "00_input_image")
|
294 |
img = correct_rotation(img)
|
295 |
brightness = estimate_brightness(img)
|
296 |
-
conf_threshold = 0.
|
297 |
|
|
|
298 |
roi_img, roi_bbox = detect_roi(img)
|
299 |
if roi_bbox:
|
300 |
-
conf_threshold *= 1.
|
301 |
|
302 |
result, confidence = perform_ocr(roi_img, roi_bbox)
|
303 |
if result and confidence >= conf_threshold * 100:
|
304 |
try:
|
305 |
weight = float(result)
|
306 |
-
if 0.001 <= weight <=
|
307 |
logging.info(f"Detected weight: {result} kg, Confidence: {confidence:.2f}%")
|
308 |
return result, confidence
|
309 |
logging.warning(f"Weight {result} out of range.")
|
310 |
except ValueError:
|
311 |
logging.warning(f"Invalid weight format: {result}")
|
312 |
|
|
|
313 |
logging.info("Primary OCR failed, using full image fallback.")
|
314 |
result, confidence = perform_ocr(img, None)
|
315 |
-
if result and confidence >= conf_threshold * 0.
|
316 |
try:
|
317 |
weight = float(result)
|
318 |
-
if 0.001 <= weight <=
|
319 |
logging.info(f"Full image weight: {result} kg, Confidence: {confidence:.2f}%")
|
320 |
return result, confidence
|
321 |
logging.warning(f"Full image weight {result} out of range.")
|
|
|
32 |
return np.mean(gray)
|
33 |
|
34 |
def preprocess_image(img):
|
35 |
+
"""Preprocess image with simplified, robust contrast enhancement."""
|
36 |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
37 |
brightness = estimate_brightness(img)
|
38 |
|
39 |
+
# Apply mild CLAHE for contrast
|
40 |
+
clahe_clip = 8.0 if brightness < 90 else 4.0
|
41 |
clahe = cv2.createCLAHE(clipLimit=clahe_clip, tileGridSize=(8, 8))
|
42 |
enhanced = clahe.apply(gray)
|
43 |
save_debug_image(enhanced, "01_preprocess_clahe")
|
44 |
|
45 |
+
# Light blur to reduce noise
|
46 |
+
blurred = cv2.GaussianBlur(enhanced, (5, 5), 0)
|
|
|
47 |
save_debug_image(blurred, "02_preprocess_blur")
|
48 |
|
49 |
+
# Dynamic thresholding with larger block size for small displays
|
50 |
+
block_size = max(7, min(31, int(img.shape[0] / 20) * 2 + 1))
|
51 |
thresh = cv2.adaptiveThreshold(
|
52 |
blurred, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
53 |
+
cv2.THRESH_BINARY_INV, block_size, 3
|
54 |
)
|
55 |
|
56 |
+
# Minimal morphological operations
|
57 |
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
|
58 |
+
thresh = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=1)
|
|
|
59 |
save_debug_image(thresh, "03_preprocess_morph")
|
60 |
return thresh, enhanced
|
61 |
|
|
|
63 |
"""Correct image rotation using edge detection."""
|
64 |
try:
|
65 |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
66 |
+
edges = cv2.Canny(gray, 30, 100, apertureSize=3)
|
67 |
+
lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=25, minLineLength=15, maxLineGap=10)
|
68 |
if lines is not None:
|
69 |
angles = [np.arctan2(line[0][3] - line[0][1], line[0][2] - line[0][0]) * 180 / np.pi for line in lines]
|
70 |
angle = np.median(angles)
|
71 |
+
if abs(angle) > 0.3:
|
72 |
h, w = img.shape[:2]
|
73 |
center = (w // 2, h // 2)
|
74 |
M = cv2.getRotationMatrix2D(center, angle, 1.0)
|
|
|
81 |
return img
|
82 |
|
83 |
def detect_roi(img):
|
84 |
+
"""Detect region of interest with broader contour analysis."""
|
85 |
try:
|
86 |
save_debug_image(img, "04_original")
|
87 |
thresh, enhanced = preprocess_image(img)
|
88 |
brightness_map = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
89 |
+
block_sizes = [max(7, min(31, int(img.shape[0] / s) * 2 + 1)) for s in [5, 10, 20]]
|
90 |
valid_contours = []
|
91 |
img_area = img.shape[0] * img.shape[1]
|
92 |
|
93 |
for block_size in block_sizes:
|
94 |
temp_thresh = cv2.adaptiveThreshold(
|
95 |
enhanced, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
96 |
+
cv2.THRESH_BINARY_INV, block_size, 3
|
97 |
)
|
98 |
+
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
|
99 |
+
temp_thresh = cv2.morphologyEx(temp_thresh, cv2.MORPH_CLOSE, kernel, iterations=2)
|
100 |
save_debug_image(temp_thresh, f"05_roi_threshold_block{block_size}")
|
101 |
contours, _ = cv2.findContours(temp_thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
102 |
|
|
|
105 |
x, y, w, h = cv2.boundingRect(c)
|
106 |
roi_brightness = np.mean(brightness_map[y:y+h, x:x+w])
|
107 |
aspect_ratio = w / h
|
108 |
+
if (50 < area < (img_area * 0.95) and
|
109 |
+
0.05 <= aspect_ratio <= 20.0 and w > 20 and h > 8 and roi_brightness > 15):
|
110 |
valid_contours.append((c, area * roi_brightness))
|
111 |
logging.debug(f"Contour (block {block_size}): Area={area}, Aspect={aspect_ratio:.2f}, Brightness={roi_brightness:.2f}")
|
112 |
|
113 |
if valid_contours:
|
114 |
contour, _ = max(valid_contours, key=lambda x: x[1])
|
115 |
x, y, w, h = cv2.boundingRect(contour)
|
116 |
+
padding = max(5, min(20, int(min(w, h) * 0.4)))
|
117 |
x, y = max(0, x - padding), max(0, y - padding)
|
118 |
w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y)
|
119 |
roi_img = img[y:y+h, x:x+w]
|
|
|
130 |
return img, None
|
131 |
|
132 |
def detect_digit_template(digit_img, brightness):
|
133 |
+
"""Digit recognition with expanded template matching."""
|
134 |
try:
|
135 |
h, w = digit_img.shape
|
136 |
+
if h < 5 or w < 2:
|
137 |
+
logging.debug looped("Digit image too small for template matching.")
|
138 |
return None
|
139 |
|
140 |
+
# Expanded digit templates for seven-segment display variations
|
141 |
digit_templates = {
|
142 |
+
'0': [
|
143 |
+
np.array([[1, 1, 1, 1, 1],
|
144 |
+
[1, 0, 0, 0, 1],
|
145 |
+
[1, 0, 0, 0, 1],
|
146 |
+
[1, 0, 0, 0, 1],
|
147 |
+
[1, 1, 1, 1, 1]], dtype=np.float32),
|
148 |
+
np.array([[1, 1, 1, 1],
|
149 |
+
[1, 0, 0, 1],
|
150 |
+
[1, 0, 0, 1],
|
151 |
+
[1, 0, 0, 1],
|
152 |
+
[1, 1, 1, 1]], dtype=np.float32)
|
153 |
+
],
|
154 |
+
'1': [
|
155 |
+
np.array([[0, 0, 1, 0, 0],
|
156 |
+
[0, 0, 1, 0, 0],
|
157 |
+
[0, 0, 1, 0, 0],
|
158 |
+
[0, 0, 1, 0, 0],
|
159 |
+
[0, 0, 1, 0, 0]], dtype=np.float32),
|
160 |
+
np.array([[0, 1, 0],
|
161 |
+
[0, 1, 0],
|
162 |
+
[0, 1, 0],
|
163 |
+
[0, 1, 0],
|
164 |
+
[0, 1, 0]], dtype=np.float32)
|
165 |
+
],
|
166 |
+
'2': [
|
167 |
+
np.array([[1, 1, 1, 1, 1],
|
168 |
+
[0, 0, 0, 1, 1],
|
169 |
+
[1, 1, 1, 1, 1],
|
170 |
+
[1, 1, 0, 0, 0],
|
171 |
+
[1, 1, 1, 1, 1]], dtype=np.float32),
|
172 |
+
np.array([[1, 1, 1, 1],
|
173 |
+
[0, 0, 1, 1],
|
174 |
+
[1, 1, 1, 1],
|
175 |
+
[1, 1, 0, 0],
|
176 |
+
[1, 1, 1, 1]], dtype=np.float32)
|
177 |
+
],
|
178 |
+
'3': [
|
179 |
+
np.array([[1, 1, 1, 1, 1],
|
180 |
+
[0, 0, 0, 1, 1],
|
181 |
+
[1, 1, 1, 1, 1],
|
182 |
+
[0, 0, 0, 1, 1],
|
183 |
+
[1, 1, 1, 1, 1]], dtype=np.float32),
|
184 |
+
np.array([[1, 1, 1, 1],
|
185 |
+
[0, 0, 1, 1],
|
186 |
+
[1, 1, 1, 1],
|
187 |
+
[0, 0, 1, 1],
|
188 |
+
[1, 1, 1, 1]], dtype=np.float32)
|
189 |
+
],
|
190 |
+
'4': [
|
191 |
+
np.array([[1, 1, 0, 0, 1],
|
192 |
+
[1, 1, 0, 0, 1],
|
193 |
+
[1, 1, 1, 1, 1],
|
194 |
+
[0, 0, 0, 0, 1],
|
195 |
+
[0, 0, 0, 0, 1]], dtype=np.float32),
|
196 |
+
np.array([[1, 0, 0, 1],
|
197 |
+
[1, 0, 0, 1],
|
198 |
+
[1, 1, 1, 1],
|
199 |
+
[0, 0, 0, 1],
|
200 |
+
[0, 0, 0, 1]], dtype=np.float32)
|
201 |
+
],
|
202 |
+
'5': [
|
203 |
+
np.array([[1, 1, 1, 1, 1],
|
204 |
+
[1, 1, 0, 0, 0],
|
205 |
+
[1, 1, 1, 1, 1],
|
206 |
+
[0, 0, 0, 1, 1],
|
207 |
+
[1, 1, 1, 1, 1]], dtype=np.float32),
|
208 |
+
np.array([[1, 1, 1, 1],
|
209 |
+
[1, 1, 0, 0],
|
210 |
+
[1, 1, 1, 1],
|
211 |
+
[0, 0, 1, 1],
|
212 |
+
[1, 1, 1, 1]], dtype=np.float32)
|
213 |
+
],
|
214 |
+
'6': [
|
215 |
+
np.array([[1, 1, 1, 1, 1],
|
216 |
+
[1, 1, 0, 0, 0],
|
217 |
+
[1, 1, 1, 1, 1],
|
218 |
+
[1, 0, 0, 1, 1],
|
219 |
+
[1, 1, 1, 1, 1]], dtype=np.float32),
|
220 |
+
np.array([[1, 1, 1, 1],
|
221 |
+
[1, 1, 0, 0],
|
222 |
+
[1, 1, 1, 1],
|
223 |
+
[1, 0, 1, 1],
|
224 |
+
[1, 1, 1, 1]], dtype=np.float32)
|
225 |
+
],
|
226 |
+
'7': [
|
227 |
+
np.array([[1, 1, 1, 1, 1],
|
228 |
+
[0, 0, 0, 0, 1],
|
229 |
+
[0, 0, 0, 0, 1],
|
230 |
+
[0, 0, 0, 0, 1],
|
231 |
+
[0, 0, 0, 0, 1]], dtype=np.float32),
|
232 |
+
np.array([[1, 1, 1, 1],
|
233 |
+
[0, 0, 0, 1],
|
234 |
+
[0, 0, 0, 1],
|
235 |
+
[0, 0, 0, 1],
|
236 |
+
[0, 0, 0, 1]], dtype=np.float32)
|
237 |
+
],
|
238 |
+
'8': [
|
239 |
+
np.array([[1, 1, 1, 1, 1],
|
240 |
+
[1, 0, 0, 0, 1],
|
241 |
+
[1, 1, 1, 1, 1],
|
242 |
+
[1, 0, 0, 0, 1],
|
243 |
+
[1, 1, 1, 1, 1]], dtype=np.float32),
|
244 |
+
np.array([[1, 1, 1, 1],
|
245 |
+
[1, 0, 0, 1],
|
246 |
+
[1, 1, 1, 1],
|
247 |
+
[1, 0, 0, 1],
|
248 |
+
[1, 1, 1, 1]], dtype=np.float32)
|
249 |
+
],
|
250 |
+
'9': [
|
251 |
+
np.array([[1, 1, 1, 1, 1],
|
252 |
+
[1, 0, 0, 0, 1],
|
253 |
+
[1, 1, 1, 1, 1],
|
254 |
+
[0, 0, 0, 1, 1],
|
255 |
+
[1, 1, 1, 1, 1]], dtype=np.float32),
|
256 |
+
np.array([[1, 1, 1, 1],
|
257 |
+
[1, 0, 0, 1],
|
258 |
+
[1, 1, 1, 1],
|
259 |
+
[0, 0, 1, 1],
|
260 |
+
[1, 1, 1, 1]], dtype=np.float32)
|
261 |
+
],
|
262 |
+
'.': [
|
263 |
+
np.array([[0, 0, 0],
|
264 |
+
[0, 1, 0],
|
265 |
+
[0, 0, 0]], dtype=np.float32),
|
266 |
+
np.array([[0, 0],
|
267 |
+
[1, 0],
|
268 |
+
[0, 0]], dtype=np.float32)
|
269 |
+
]
|
270 |
}
|
271 |
|
272 |
+
# Try multiple sizes for digit image
|
273 |
+
sizes = [(5, 5), (4, 4), (3, 3)] if h > w else [(3, 3), (2, 2)]
|
|
|
|
|
|
|
274 |
best_match, best_score = None, -1
|
275 |
+
for size in sizes:
|
276 |
+
digit_img_resized = cv2.resize(digit_img, size, interpolation=cv2.INTER_AREA)
|
277 |
+
digit_img_resized = (digit_img_resized > 100).astype(np.float32) # Binarize
|
278 |
+
|
279 |
+
for digit, templates in digit_templates.items():
|
280 |
+
for template in templates:
|
281 |
+
if digit == '.' and size[0] > 3:
|
282 |
+
continue
|
283 |
+
if digit != '.' and size[0] <= 3:
|
284 |
+
continue
|
285 |
+
if template.shape[0] != size[0] or template.shape[1] != size[1]:
|
286 |
+
continue
|
287 |
+
result = cv2.matchTemplate(digit_img_resized, template, cv2.TM_CCOEFF_NORMED)
|
288 |
+
_, max_val, _, _ = cv2.minMaxLoc(result)
|
289 |
+
if max_val > 0.55 and max_val > best_score: # Further lowered threshold
|
290 |
+
best_score = max_val
|
291 |
+
best_match = digit
|
292 |
logging.debug(f"Template match: {best_match}, Score: {best_score:.2f}")
|
293 |
+
return best_match if best_score > 0.55 else None
|
294 |
except Exception as e:
|
295 |
logging.error(f"Template digit detection failed: {str(e)}")
|
296 |
return None
|
297 |
|
298 |
def perform_ocr(img, roi_bbox):
|
299 |
+
"""Perform OCR with Tesseract and robust template fallback."""
|
300 |
try:
|
301 |
thresh, enhanced = preprocess_image(img)
|
302 |
brightness = estimate_brightness(img)
|
303 |
pil_img = Image.fromarray(enhanced)
|
304 |
save_debug_image(pil_img, "07_ocr_input")
|
305 |
|
306 |
+
# Try multiple Tesseract configurations
|
307 |
+
configs = [
|
308 |
+
r'--oem 3 --psm 7 -c tessedit_char_whitelist=0123456789.', # Single line
|
309 |
+
r'--oem 3 --psm 6 -c tessedit_char_whitelist=0123456789.' # Block of text
|
310 |
+
]
|
311 |
+
for config in configs:
|
312 |
+
text = pytesseract.image_to_string(pil_img, config=config)
|
313 |
+
logging.info(f"Tesseract raw output (config {config}): {text}")
|
314 |
+
text = re.sub(r"[^\d\.]", "", text)
|
315 |
+
if text.count('.') > 1:
|
316 |
+
text = text.replace('.', '', text.count('.') - 1)
|
317 |
+
text = text.strip('.')
|
318 |
+
if text and re.fullmatch(r"^\d*\.?\d*$", text):
|
319 |
+
text = text.lstrip('0') or '0'
|
320 |
+
confidence = 95.0 if len(text.replace('.', '')) >= 3 else 90.0
|
321 |
+
logging.info(f"Validated Tesseract text: {text}, Confidence: {confidence:.2f}%")
|
322 |
+
return text, confidence
|
323 |
|
324 |
# Fallback to template-based detection
|
325 |
logging.info("Tesseract failed, using template-based detection.")
|
|
|
327 |
digits_info = []
|
328 |
for c in contours:
|
329 |
x, y, w, h = cv2.boundingRect(c)
|
330 |
+
if w > 4 and h > 5 and 0.03 <= w/h <= 4.0:
|
331 |
digits_info.append((x, x+w, y, y+h))
|
332 |
|
333 |
if digits_info:
|
|
|
344 |
digit = detect_digit_template(digit_crop, brightness)
|
345 |
if digit:
|
346 |
recognized_text += digit
|
347 |
+
elif x_min - prev_x_max < 10 and prev_x_max != -float('inf'):
|
348 |
recognized_text += '.'
|
349 |
prev_x_max = x_max
|
350 |
|
|
|
372 |
save_debug_image(img, "00_input_image")
|
373 |
img = correct_rotation(img)
|
374 |
brightness = estimate_brightness(img)
|
375 |
+
conf_threshold = 0.65 if brightness > 70 else 0.45
|
376 |
|
377 |
+
# Try ROI-based detection
|
378 |
roi_img, roi_bbox = detect_roi(img)
|
379 |
if roi_bbox:
|
380 |
+
conf_threshold *= 1.15 if (roi_bbox[2] * roi_bbox[3]) > (img.shape[0] * img.shape[1] * 0.05) else 1.0
|
381 |
|
382 |
result, confidence = perform_ocr(roi_img, roi_bbox)
|
383 |
if result and confidence >= conf_threshold * 100:
|
384 |
try:
|
385 |
weight = float(result)
|
386 |
+
if 0.001 <= weight <= 5000:
|
387 |
logging.info(f"Detected weight: {result} kg, Confidence: {confidence:.2f}%")
|
388 |
return result, confidence
|
389 |
logging.warning(f"Weight {result} out of range.")
|
390 |
except ValueError:
|
391 |
logging.warning(f"Invalid weight format: {result}")
|
392 |
|
393 |
+
# Full image fallback
|
394 |
logging.info("Primary OCR failed, using full image fallback.")
|
395 |
result, confidence = perform_ocr(img, None)
|
396 |
+
if result and confidence >= conf_threshold * 0.85 * 100:
|
397 |
try:
|
398 |
weight = float(result)
|
399 |
+
if 0.001 <= weight <= 5000:
|
400 |
logging.info(f"Full image weight: {result} kg, Confidence: {confidence:.2f}%")
|
401 |
return result, confidence
|
402 |
logging.warning(f"Full image weight {result} out of range.")
|