Sanjayraju30 commited on
Commit
c320b80
·
verified ·
1 Parent(s): 9ac49a2

Update ocr_engine.py

Browse files
Files changed (1) hide show
  1. ocr_engine.py +105 -143
ocr_engine.py CHANGED
@@ -27,73 +27,85 @@ def save_debug_image(img, filename_suffix, prefix=""):
27
  logging.info(f"Saved debug image: {filename}")
28
 
29
  def estimate_brightness(img):
30
- """Estimate image brightness to detect illuminated displays"""
31
  gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
32
  return np.mean(gray)
33
 
 
 
 
 
 
 
 
 
 
 
 
 
34
  def detect_roi(img):
35
- """Detect and crop the region of interest (likely the digital display)"""
36
  try:
37
- save_debug_image(img, "01_original")
38
- gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
39
- save_debug_image(gray, "02_grayscale")
40
 
41
- # Use adaptive thresholding for better robustness
42
- thresh = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
43
- cv2.THRESH_BINARY, 11, 2)
44
- save_debug_image(thresh, "03_roi_adaptive_threshold")
45
 
46
- kernel = np.ones((7, 7), np.uint8) # Smaller kernel
47
- dilated = cv2.dilate(thresh, kernel, iterations=3) # Fewer iterations
48
- save_debug_image(dilated, "04_roi_dilated")
 
 
49
 
50
- contours, _ = cv2.findContours(dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
51
 
52
  if contours:
53
  img_area = img.shape[0] * img.shape[1]
54
  valid_contours = []
55
  for c in contours:
56
  area = cv2.contourArea(c)
57
- # Relaxed area and aspect ratio filters
58
- if 500 < area < (img_area * 0.95):
59
  x, y, w, h = cv2.boundingRect(c)
60
  aspect_ratio = w / h
61
- if 1.5 <= aspect_ratio <= 6.0 and w > 80 and h > 40:
62
  valid_contours.append(c)
63
-
64
  if valid_contours:
65
- for contour in sorted(valid_contours, key=cv2.contourArea, reverse=True):
66
- x, y, w, h = cv2.boundingRect(contour)
67
- padding = 60 # Increased padding
68
- x, y = max(0, x - padding), max(0, y - padding)
69
- w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y)
70
- roi_img = img[y:y+h, x:x+w]
71
- save_debug_image(roi_img, "05_detected_roi")
72
- logging.info(f"Detected ROI with dimensions: ({x}, {y}, {w}, {h})")
73
- return roi_img, (x, y, w, h)
74
 
75
  logging.info("No suitable ROI found, returning original image.")
76
- save_debug_image(img, "05_no_roi_original_fallback")
77
  return img, None
78
  except Exception as e:
79
  logging.error(f"ROI detection failed: {str(e)}")
80
- save_debug_image(img, "05_roi_detection_error_fallback")
81
  return img, None
82
 
83
  def detect_segments(digit_img):
84
- """Detect seven-segment patterns in a digit image"""
85
  h, w = digit_img.shape
86
- if h < 15 or w < 10:
87
  return None
88
 
89
  segments = {
90
- 'top': (int(w*0.15), int(w*0.85), 0, int(h*0.2)),
91
- 'middle': (int(w*0.15), int(w*0.85), int(h*0.4), int(h*0.6)),
92
- 'bottom': (int(w*0.15), int(w*0.85), int(h*0.8), h),
93
- 'left_top': (0, int(w*0.25), int(h*0.05), int(h*0.5)),
94
- 'left_bottom': (0, int(w*0.25), int(h*0.5), int(h*0.95)),
95
- 'right_top': (int(w*0.75), w, int(h*0.05), int(h*0.5)),
96
- 'right_bottom': (int(w*0.75), w, int(h*0.5), int(h*0.95))
97
  }
98
 
99
  segment_presence = {}
@@ -106,7 +118,7 @@ def detect_segments(digit_img):
106
  continue
107
  pixel_count = np.sum(region == 255)
108
  total_pixels = region.size
109
- segment_presence[name] = pixel_count / total_pixels > 0.45 # Lowered threshold
110
 
111
  digit_patterns = {
112
  '0': ('top', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'),
@@ -126,37 +138,34 @@ def detect_segments(digit_img):
126
  for digit, pattern in digit_patterns.items():
127
  matches = sum(1 for segment in pattern if segment_presence.get(segment, False))
128
  non_matches_penalty = sum(1 for segment in segment_presence if segment not in pattern and segment_presence[segment])
129
- current_score = matches - non_matches_penalty
130
  if all(segment_presence.get(s, False) for s in pattern):
131
- current_score += 0.5
132
- if current_score > max_score:
133
- max_score = current_score
134
  best_match = digit
135
- elif current_score == max_score and best_match is not None:
136
- current_digit_non_matches = sum(1 for segment in segment_presence if segment not in pattern and segment_presence[segment])
137
- best_digit_pattern = digit_patterns[best_match]
138
- best_digit_non_matches = sum(1 for segment in segment_presence if segment not in best_digit_pattern and segment_presence[segment])
139
- if current_digit_non_matches < best_digit_non_matches:
140
- best_match = digit
141
 
142
  logging.debug(f"Segment presence: {segment_presence}, Detected digit: {best_match}")
143
  return best_match
144
 
145
  def custom_seven_segment_ocr(img, roi_bbox):
146
- """Perform custom OCR for seven-segment displays"""
147
  try:
148
- gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
149
  brightness = estimate_brightness(img)
150
- if brightness > 150:
151
- _, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
152
- else:
153
- _, thresh = cv2.threshold(gray, 80, 255, cv2.THRESH_BINARY) # Lower threshold
154
- save_debug_image(thresh, "06_roi_thresh_for_digits")
 
 
 
155
 
156
  results = easyocr_reader.readtext(thresh, detail=1, paragraph=False,
157
- contrast_ths=0.2, adjust_contrast=0.8,
158
- text_threshold=0.7, mag_ratio=2.0,
159
- allowlist='0123456789.', y_ths=0.3)
160
 
161
  logging.info(f"EasyOCR results: {results}")
162
  if not results:
@@ -167,7 +176,7 @@ def custom_seven_segment_ocr(img, roi_bbox):
167
  for (bbox, text, conf) in results:
168
  (x1, y1), (x2, y2), (x3, y3), (x4, y4) = bbox
169
  h_bbox = max(y1, y2, y3, y4) - min(y1, y2, y3, y4)
170
- if len(text) == 1 and (text.isdigit() or text == '.') and h_bbox > 8:
171
  x_min, x_max = int(min(x1, x4)), int(max(x2, x3))
172
  y_min, y_max = int(min(y1, y2)), int(max(y3, y4))
173
  digits_info.append((x_min, x_max, y_min, y_max, text, conf))
@@ -180,21 +189,18 @@ def custom_seven_segment_ocr(img, roi_bbox):
180
  if x_max <= x_min or y_max <= y_min:
181
  continue
182
  digit_img_crop = thresh[y_min:y_max, x_min:x_max]
183
- save_debug_image(digit_img_crop, f"07_digit_crop_{idx}_{easyocr_char}")
184
- if easyocr_conf > 0.9 or easyocr_char == '.' or digit_img_crop.shape[0] < 15 or digit_img_crop.shape[1] < 10:
185
  recognized_text += easyocr_char
186
  else:
187
  digit_from_segments = detect_segments(digit_img_crop)
188
- if digit_from_segments:
189
- recognized_text += digit_from_segments
190
- else:
191
- recognized_text += easyocr_char
192
 
193
  logging.info(f"Before validation, recognized_text: {recognized_text}")
194
  text = re.sub(r"[^\d\.]", "", recognized_text)
195
  if text.count('.') > 1:
196
  text = text.replace('.', '', text.count('.') - 1)
197
- if text and re.fullmatch(r"^\d*\.?\d*$", text) and len(text) > 0:
198
  if text.startswith('.'):
199
  text = "0" + text
200
  if text.endswith('.'):
@@ -209,92 +215,56 @@ def custom_seven_segment_ocr(img, roi_bbox):
209
  return None
210
 
211
  def extract_weight_from_image(pil_img):
212
- """Extract weight from a PIL image of a digital scale display"""
213
  try:
214
  img = np.array(pil_img)
215
  img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
216
- save_debug_image(img, "00_input_image") # Log input image
217
 
218
  brightness = estimate_brightness(img)
219
- conf_threshold = 0.6 if brightness > 150 else (0.5 if brightness > 80 else 0.4)
220
 
221
  roi_img, roi_bbox = detect_roi(img)
222
  custom_result = custom_seven_segment_ocr(roi_img, roi_bbox)
223
  if custom_result:
224
- if "." in custom_result:
225
- int_part, dec_part = custom_result.split(".")
226
- int_part = int_part.lstrip("0") or "0"
227
- dec_part = dec_part.rstrip('0')
228
- if not dec_part and int_part != "0":
229
- custom_result = int_part
230
- elif not dec_part and int_part == "0":
231
- custom_result = "0"
232
- else:
233
- custom_result = f"{int_part}.{dec_part}"
234
- else:
235
- custom_result = custom_result.lstrip('0') or "0"
236
  try:
237
- float(custom_result)
238
- logging.info(f"Custom OCR result: {custom_result}, Confidence: 100.0%")
239
- return custom_result, 100.0
 
 
 
240
  except ValueError:
241
- logging.warning(f"Custom OCR result '{custom_result}' is not a valid number, falling back.")
242
- custom_result = None
243
 
244
- logging.info("Custom OCR failed or invalid, falling back to general EasyOCR.")
245
- processed_roi_img_gray = cv2.cvtColor(roi_img, cv2.COLOR_BGR2GRAY)
246
- kernel_sharpening = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]])
247
- sharpened_roi = cv2.filter2D(processed_roi_img_gray, -1, kernel_sharpening)
248
- save_debug_image(sharpened_roi, "08_fallback_sharpened")
249
- processed_roi_img_final = cv2.adaptiveThreshold(sharpened_roi, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
250
- cv2.THRESH_BINARY, 21, 5)
251
- save_debug_image(processed_roi_img_final, "09_fallback_adaptive_thresh")
252
 
253
- results = easyocr_reader.readtext(processed_roi_img_final, detail=1, paragraph=False,
254
- contrast_ths=0.3, adjust_contrast=0.9,
255
- text_threshold=0.5, mag_ratio=2.0,
256
- allowlist='0123456789.', batch_size=4, y_ths=0.3)
257
 
258
  best_weight = None
259
  best_conf = 0.0
260
  best_score = 0.0
261
  for (bbox, text, conf) in results:
262
- text = text.lower().strip()
263
- text = text.replace(",", ".").replace(";", ".").replace(":", ".").replace(" ", "")
264
- text = text.replace("o", "0").replace("O", "0").replace("q", "0").replace("Q", "0")
265
- text = text.replace("s", "5").replace("S", "5")
266
- text = text.replace("g", "9").replace("G", "6")
267
- text = text.replace("l", "1").replace("I", "1").replace("|", "1")
268
- text = text.replace("b", "8").replace("B", "8")
269
- text = text.replace("z", "2").replace("Z", "2")
270
- text = text.replace("a", "4").replace("A", "4")
271
- text = text.replace("e", "3")
272
- text = text.replace("t", "7")
273
- text = text.replace("~", "").replace("`", "")
274
- text = re.sub(r"(kgs|kg|k|lb|g|gr|pounds|lbs)\b", "", text)
275
  text = re.sub(r"[^\d\.]", "", text)
276
  if text.count('.') > 1:
277
- parts = text.split('.')
278
- text = parts[0] + '.' + ''.join(parts[1:])
279
  text = text.strip('.')
280
- if re.fullmatch(r"^\d*\.?\d{0,3}$", text) and len(text.replace('.', '')) > 0:
281
  try:
282
  weight = float(text)
283
- range_score = 1.0
284
- if 0.1 <= weight <= 250:
285
- range_score = 1.5
286
- elif weight > 250 and weight <= 500:
287
- range_score = 1.2
288
- elif weight > 500 and weight <= 1000:
289
- range_score = 1.0
290
- else:
291
- range_score = 0.5
292
  digit_count = len(text.replace('.', ''))
293
- digit_score = 1.0
294
- if digit_count >= 2 and digit_count <= 5:
295
- digit_score = 1.3
296
- elif digit_count == 1:
297
- digit_score = 0.8
298
  score = conf * range_score * digit_score
299
  if roi_bbox:
300
  (x_roi, y_roi, w_roi, h_roi) = roi_bbox
@@ -302,11 +272,8 @@ def extract_weight_from_image(pil_img):
302
  x_min, y_min = int(min(b[0] for b in bbox)), int(min(b[1] for b in bbox))
303
  x_max, y_max = int(max(b[0] for b in bbox)), int(max(b[1] for b in bbox))
304
  bbox_area = (x_max - x_min) * (y_max - y_min)
305
- if roi_area > 0 and bbox_area / roi_area < 0.03:
306
- score *= 0.5
307
- bbox_aspect_ratio = (x_max - x_min) / (y_max - y_min) if (y_max - y_min) > 0 else 0
308
- if bbox_aspect_ratio < 0.2:
309
- score *= 0.7
310
  if score > best_score and conf > conf_threshold:
311
  best_weight = text
312
  best_conf = conf
@@ -320,24 +287,19 @@ def extract_weight_from_image(pil_img):
320
  logging.info("No valid weight detected after all attempts.")
321
  return "Not detected", 0.0
322
 
 
323
  if "." in best_weight:
324
  int_part, dec_part = best_weight.split(".")
325
  int_part = int_part.lstrip("0") or "0"
326
  dec_part = dec_part.rstrip('0')
327
- if not dec_part and int_part != "0":
328
- best_weight = int_part
329
- elif not dec_part and int_part == "0":
330
- best_weight = "0"
331
- else:
332
- best_weight = f"{int_part}.{dec_part}"
333
  else:
334
  best_weight = best_weight.lstrip('0') or "0"
335
 
336
  try:
337
- final_float_weight = float(best_weight)
338
- if final_float_weight < 0.01 or final_float_weight > 1000:
339
- logging.warning(f"Detected weight {final_float_weight} is outside typical range, reducing confidence.")
340
- best_conf *= 0.5
341
  except ValueError:
342
  pass
343
 
 
27
  logging.info(f"Saved debug image: {filename}")
28
 
29
  def estimate_brightness(img):
30
+ """Estimate image brightness to detect illuminated displays."""
31
  gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
32
  return np.mean(gray)
33
 
34
+ def preprocess_image(img):
35
+ """Preprocess image for better OCR accuracy."""
36
+ gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
37
+ # Apply Gaussian blur to reduce noise
38
+ blurred = cv2.GaussianBlur(gray, (5, 5), 0)
39
+ save_debug_image(blurred, "01_preprocess_blurred")
40
+ # Enhance contrast using CLAHE
41
+ clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
42
+ enhanced = clahe.apply(blurred)
43
+ save_debug_image(enhanced, "02_preprocess_clahe")
44
+ return enhanced
45
+
46
  def detect_roi(img):
47
+ """Detect and crop the region of interest (likely the digital display)."""
48
  try:
49
+ save_debug_image(img, "03_original")
50
+ preprocessed = preprocess_image(img)
 
51
 
52
+ # Adaptive thresholding with refined parameters
53
+ thresh = cv2.adaptiveThreshold(preprocessed, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
54
+ cv2.THRESH_BINARY_INV, 15, 5)
55
+ save_debug_image(thresh, "04_roi_adaptive_threshold")
56
 
57
+ # Morphological operations to connect digits
58
+ kernel = np.ones((5, 5), np.uint8)
59
+ dilated = cv2.dilate(thresh, kernel, iterations=2)
60
+ eroded = cv2.erode(dilated, kernel, iterations=1)
61
+ save_debug_image(eroded, "05_roi_morphological")
62
 
63
+ contours, _ = cv2.findContours(eroded, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
64
 
65
  if contours:
66
  img_area = img.shape[0] * img.shape[1]
67
  valid_contours = []
68
  for c in contours:
69
  area = cv2.contourArea(c)
70
+ if 1000 < area < (img_area * 0.9):
 
71
  x, y, w, h = cv2.boundingRect(c)
72
  aspect_ratio = w / h
73
+ if 1.8 <= aspect_ratio <= 8.0 and w > 100 and h > 50:
74
  valid_contours.append(c)
75
+
76
  if valid_contours:
77
+ contour = max(valid_contours, key=cv2.contourArea)
78
+ x, y, w, h = cv2.boundingRect(contour)
79
+ padding = 80
80
+ x, y = max(0, x - padding), max(0, y - padding)
81
+ w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y)
82
+ roi_img = img[y:y+h, x:x+w]
83
+ save_debug_image(roi_img, "06_detected_roi")
84
+ logging.info(f"Detected ROI with dimensions: ({x}, {y}, {w}, {h})")
85
+ return roi_img, (x, y, w, h)
86
 
87
  logging.info("No suitable ROI found, returning original image.")
88
+ save_debug_image(img, "06_no_roi_original_fallback")
89
  return img, None
90
  except Exception as e:
91
  logging.error(f"ROI detection failed: {str(e)}")
92
+ save_debug_image(img, "06_roi_detection_error_fallback")
93
  return img, None
94
 
95
  def detect_segments(digit_img):
96
+ """Detect seven-segment patterns in a digit image."""
97
  h, w = digit_img.shape
98
+ if h < 20 or w < 15:
99
  return None
100
 
101
  segments = {
102
+ 'top': (int(w*0.1), int(w*0.9), 0, int(h*0.15)),
103
+ 'middle': (int(w*0.1), int(w*0.9), int(h*0.45), int(h*0.55)),
104
+ 'bottom': (int(w*0.1), int(w*0.9), int(h*0.85), h),
105
+ 'left_top': (0, int(w*0.2), int(h*0.1), int(h*0.5)),
106
+ 'left_bottom': (0, int(w*0.2), int(h*0.5), int(h*0.9)),
107
+ 'right_top': (int(w*0.8), w, int(h*0.1), int(h*0.5)),
108
+ 'right_bottom': (int(w*0.8), w, int(h*0.5), int(h*0.9))
109
  }
110
 
111
  segment_presence = {}
 
118
  continue
119
  pixel_count = np.sum(region == 255)
120
  total_pixels = region.size
121
+ segment_presence[name] = pixel_count / total_pixels > 0.4
122
 
123
  digit_patterns = {
124
  '0': ('top', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'),
 
138
  for digit, pattern in digit_patterns.items():
139
  matches = sum(1 for segment in pattern if segment_presence.get(segment, False))
140
  non_matches_penalty = sum(1 for segment in segment_presence if segment not in pattern and segment_presence[segment])
141
+ score = matches - 0.5 * non_matches_penalty
142
  if all(segment_presence.get(s, False) for s in pattern):
143
+ score += 1.0
144
+ if score > max_score:
145
+ max_score = score
146
  best_match = digit
 
 
 
 
 
 
147
 
148
  logging.debug(f"Segment presence: {segment_presence}, Detected digit: {best_match}")
149
  return best_match
150
 
151
  def custom_seven_segment_ocr(img, roi_bbox):
152
+ """Perform custom OCR for seven-segment displays."""
153
  try:
154
+ preprocessed = preprocess_image(img)
155
  brightness = estimate_brightness(img)
156
+ thresh_value = 100 if brightness < 100 else 0
157
+ _, thresh = cv2.threshold(preprocessed, thresh_value, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
158
+ save_debug_image(thresh, "07_roi_thresh_for_digits")
159
+
160
+ # Morphological operations to enhance digit segments
161
+ kernel = np.ones((3, 3), np.uint8)
162
+ thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=2)
163
+ save_debug_image(thresh, "08_morph_closed")
164
 
165
  results = easyocr_reader.readtext(thresh, detail=1, paragraph=False,
166
+ contrast_ths=0.3, adjust_contrast=1.0,
167
+ text_threshold=0.6, mag_ratio=3.0,
168
+ allowlist='0123456789.', y_ths=0.2)
169
 
170
  logging.info(f"EasyOCR results: {results}")
171
  if not results:
 
176
  for (bbox, text, conf) in results:
177
  (x1, y1), (x2, y2), (x3, y3), (x4, y4) = bbox
178
  h_bbox = max(y1, y2, y3, y4) - min(y1, y2, y3, y4)
179
+ if len(text) == 1 and (text.isdigit() or text == '.') and h_bbox > 10:
180
  x_min, x_max = int(min(x1, x4)), int(max(x2, x3))
181
  y_min, y_max = int(min(y1, y2)), int(max(y3, y4))
182
  digits_info.append((x_min, x_max, y_min, y_max, text, conf))
 
189
  if x_max <= x_min or y_max <= y_min:
190
  continue
191
  digit_img_crop = thresh[y_min:y_max, x_min:x_max]
192
+ save_debug_image(digit_img_crop, f"09_digit_crop_{idx}_{easyocr_char}")
193
+ if easyocr_conf > 0.95 or easyocr_char == '.':
194
  recognized_text += easyocr_char
195
  else:
196
  digit_from_segments = detect_segments(digit_img_crop)
197
+ recognized_text += digit_from_segments if digit_from_segments else easyocr_char
 
 
 
198
 
199
  logging.info(f"Before validation, recognized_text: {recognized_text}")
200
  text = re.sub(r"[^\d\.]", "", recognized_text)
201
  if text.count('.') > 1:
202
  text = text.replace('.', '', text.count('.') - 1)
203
+ if text and re.fullmatch(r"^\d*\.?\d+$", text):
204
  if text.startswith('.'):
205
  text = "0" + text
206
  if text.endswith('.'):
 
215
  return None
216
 
217
  def extract_weight_from_image(pil_img):
218
+ """Extract weight from a PIL image of a digital scale display."""
219
  try:
220
  img = np.array(pil_img)
221
  img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
222
+ save_debug_image(img, "00_input_image")
223
 
224
  brightness = estimate_brightness(img)
225
+ conf_threshold = 0.7 if brightness > 150 else (0.6 if brightness > 80 else 0.5)
226
 
227
  roi_img, roi_bbox = detect_roi(img)
228
  custom_result = custom_seven_segment_ocr(roi_img, roi_bbox)
229
  if custom_result:
 
 
 
 
 
 
 
 
 
 
 
 
230
  try:
231
+ weight = float(custom_result)
232
+ if 0.1 <= weight <= 300:
233
+ logging.info(f"Custom OCR result: {custom_result}, Confidence: 95.0%")
234
+ return custom_result, 95.0
235
+ else:
236
+ logging.warning(f"Custom OCR result {custom_result} outside typical weight range.")
237
  except ValueError:
238
+ logging.warning(f"Custom OCR result '{custom_result}' is not a valid number.")
 
239
 
240
+ logging.info("Custom OCR failed or invalid, falling back to enhanced EasyOCR.")
241
+ preprocessed_roi = preprocess_image(roi_img)
242
+ kernel_sharpening = np.array([[-1, -1, -1], [-1, 9, -1], [-1, -1, -1]])
243
+ sharpened_roi = cv2.filter2D(preprocessed_roi, -1, kernel_sharpening)
244
+ save_debug_image(sharpened_roi, "10_fallback_sharpened")
245
+ final_roi = cv2.adaptiveThreshold(sharpened_roi, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
246
+ cv2.THRESH_BINARY_INV, 25, 8)
247
+ save_debug_image(final_roi, "11_fallback_adaptive_thresh")
248
 
249
+ results = easyocr_reader.readtext(final_roi, detail=1, paragraph=False,
250
+ contrast_ths=0.4, adjust_contrast=1.2,
251
+ text_threshold=0.5, mag_ratio=4.0,
252
+ allowlist='0123456789.', batch_size=4, y_ths=0.2)
253
 
254
  best_weight = None
255
  best_conf = 0.0
256
  best_score = 0.0
257
  for (bbox, text, conf) in results:
 
 
 
 
 
 
 
 
 
 
 
 
 
258
  text = re.sub(r"[^\d\.]", "", text)
259
  if text.count('.') > 1:
260
+ text = text.replace('.', '', text.count('.') - 1)
 
261
  text = text.strip('.')
262
+ if re.fullmatch(r"^\d*\.?\d+$", text):
263
  try:
264
  weight = float(text)
265
+ range_score = 1.5 if 0.1 <= weight <= 300 else 0.8
 
 
 
 
 
 
 
 
266
  digit_count = len(text.replace('.', ''))
267
+ digit_score = 1.3 if 2 <= digit_count <= 5 else 0.9
 
 
 
 
268
  score = conf * range_score * digit_score
269
  if roi_bbox:
270
  (x_roi, y_roi, w_roi, h_roi) = roi_bbox
 
272
  x_min, y_min = int(min(b[0] for b in bbox)), int(min(b[1] for b in bbox))
273
  x_max, y_max = int(max(b[0] for b in bbox)), int(max(b[1] for b in bbox))
274
  bbox_area = (x_max - x_min) * (y_max - y_min)
275
+ if roi_area > 0 and bbox_area / roi_area < 0.05:
276
+ score *= 0.6
 
 
 
277
  if score > best_score and conf > conf_threshold:
278
  best_weight = text
279
  best_conf = conf
 
287
  logging.info("No valid weight detected after all attempts.")
288
  return "Not detected", 0.0
289
 
290
+ # Format the weight
291
  if "." in best_weight:
292
  int_part, dec_part = best_weight.split(".")
293
  int_part = int_part.lstrip("0") or "0"
294
  dec_part = dec_part.rstrip('0')
295
+ best_weight = f"{int_part}.{dec_part}" if dec_part else int_part
 
 
 
 
 
296
  else:
297
  best_weight = best_weight.lstrip('0') or "0"
298
 
299
  try:
300
+ final_weight = float(best_weight)
301
+ if final_weight < 0.1 or final_weight > 300:
302
+ best_conf *= 0.7
 
303
  except ValueError:
304
  pass
305