Spaces:
Build error
Build error
import numpy as np | |
import re | |
import cv2 | |
from PIL import Image | |
import easyocr | |
# β Initialize EasyOCR Reader once | |
reader = easyocr.Reader(['en'], gpu=False) | |
def preprocess_image(image): | |
""" | |
Convert to grayscale and apply adaptive thresholding | |
to enhance contrast for digital scale OCR. | |
""" | |
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) | |
thresh = cv2.adaptiveThreshold( | |
gray, 255, | |
cv2.ADAPTIVE_THRESH_MEAN_C, | |
cv2.THRESH_BINARY_INV, | |
11, 10 | |
) | |
return thresh | |
def extract_weight_from_image(pil_image): | |
try: | |
# β Convert PIL image to OpenCV format | |
image = np.array(pil_image.convert("RGB")) | |
# β Preprocess image | |
processed = preprocess_image(image) | |
# β Optional: Save debug image for troubleshooting | |
debug_path = "debug_processed_image.png" | |
Image.fromarray(processed).save(debug_path) | |
print(f"[DEBUG] Preprocessed image saved to: {debug_path}") | |
# β Perform OCR using EasyOCR | |
result = reader.readtext(processed) | |
print("π OCR Results:") | |
for detection in result: | |
print(f" β’ Text: '{detection[1]}' | Confidence: {detection[2]*100:.2f}%") | |
# β Extract first matching numeric value | |
for detection in result: | |
text = detection[1].replace(",", ".") # normalize decimal | |
conf = detection[2] | |
match = re.search(r"\b\d{1,4}(\.\d{1,2})?\b", text) | |
if match: | |
return match.group(), round(conf * 100, 2) | |
# β No weight found | |
return "No weight detected", 0.0 | |
except Exception as e: | |
print(f"β OCR Error: {e}") | |
return f"Error: {str(e)}", 0.0 | |