Spaces:
Build error
Build error
import numpy as np | |
import re | |
import cv2 | |
from PIL import Image | |
import easyocr | |
import os | |
# Initialize OCR Reader | |
reader = easyocr.Reader(['en'], gpu=False) | |
def preprocess_image(image): | |
"""Preprocess the image to improve OCR accuracy""" | |
# Convert to grayscale | |
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) | |
# Apply threshold to isolate digits | |
_, thresh = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU) | |
return thresh | |
def extract_weight_from_image(pil_image): | |
try: | |
# Convert PIL to OpenCV format | |
image = np.array(pil_image.convert("RGB")) | |
# Print image shape for debugging | |
print("Image shape:", image.shape) | |
# Preprocess for better OCR accuracy | |
processed = preprocess_image(image) | |
# Save debug image | |
debug_img = Image.fromarray(processed) | |
debug_path = "debug_processed_image.png" | |
debug_img.save(debug_path) | |
print(f"β Processed image saved to: {debug_path}") | |
# Run OCR on processed image | |
result = reader.readtext(processed) | |
print("β OCR Results:") | |
for r in result: | |
print(f"Text: '{r[1]}' | Confidence: {r[2] * 100:.2f}%") | |
# Try to find numeric weight | |
weight = None | |
confidence = 0.0 | |
for detection in result: | |
text = detection[1] | |
conf = detection[2] | |
# Match numbers like 53.25 or 45 | |
match = re.search(r"\b\d+(\.\d+)?\b", text) | |
if match: | |
weight = match.group() | |
confidence = conf | |
break | |
if weight: | |
return weight, round(confidence * 100, 2) | |
else: | |
return "No weight detected", 0.0 | |
except Exception as e: | |
print("β Exception during OCR:", str(e)) | |
return f"Error: {str(e)}", 0.0 | |