Autoweight / ocr_engine.py
Sanjayraju30's picture
Update ocr_engine.py
c28abeb verified
raw
history blame
1.87 kB
import numpy as np
import re
import cv2
from PIL import Image
import easyocr
import os
# Initialize OCR Reader
reader = easyocr.Reader(['en'], gpu=False)
def preprocess_image(image):
"""Preprocess the image to improve OCR accuracy"""
# Convert to grayscale
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
# Apply threshold to isolate digits
_, thresh = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
return thresh
def extract_weight_from_image(pil_image):
try:
# Convert PIL to OpenCV format
image = np.array(pil_image.convert("RGB"))
# Print image shape for debugging
print("Image shape:", image.shape)
# Preprocess for better OCR accuracy
processed = preprocess_image(image)
# Save debug image
debug_img = Image.fromarray(processed)
debug_path = "debug_processed_image.png"
debug_img.save(debug_path)
print(f"βœ… Processed image saved to: {debug_path}")
# Run OCR on processed image
result = reader.readtext(processed)
print("βœ… OCR Results:")
for r in result:
print(f"Text: '{r[1]}' | Confidence: {r[2] * 100:.2f}%")
# Try to find numeric weight
weight = None
confidence = 0.0
for detection in result:
text = detection[1]
conf = detection[2]
# Match numbers like 53.25 or 45
match = re.search(r"\b\d+(\.\d+)?\b", text)
if match:
weight = match.group()
confidence = conf
break
if weight:
return weight, round(confidence * 100, 2)
else:
return "No weight detected", 0.0
except Exception as e:
print("❌ Exception during OCR:", str(e))
return f"Error: {str(e)}", 0.0