import easyocr import re import cv2 import numpy as np from PIL import Image # Initialize EasyOCR reader (only once) reader = easyocr.Reader(['en'], gpu=False) def preprocess_image(image): # Convert to grayscale gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) # Apply thresholding (adaptive works well for 7-seg) thresh = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 15, 10) # Dilation to strengthen numbers kernel = np.ones((2, 2), np.uint8) dilated = cv2.dilate(thresh, kernel, iterations=1) return dilated def extract_weight_from_image(pil_image): try: # Convert PIL to OpenCV image = np.array(pil_image.convert("RGB")) processed = preprocess_image(image) # OCR result = reader.readtext(processed) # Filter and extract digits like weight (e.g., 75.5) weight = None confidence = 0.0 for detection in result: text = detection[1] conf = detection[2] match = re.search(r"\d{2,4}(\.\d{1,2})?", text) # match 2-4 digit decimal if match: weight = match.group() confidence = conf break if weight: return weight, round(confidence * 100, 2) else: return "No weight detected", 0.0 except Exception as e: return f"Error: {str(e)}", 0.0