Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
# Load fake news classifier
|
5 |
+
classifier = pipeline("text-classification", model="mrm8488/bert-tiny-finetuned-fake-news", return_all_scores=True)
|
6 |
+
|
7 |
+
def detect_fake_news(text):
|
8 |
+
results = classifier(text)[0]
|
9 |
+
results = sorted(results, key=lambda x: x['score'], reverse=True)
|
10 |
+
|
11 |
+
label = results[0]['label']
|
12 |
+
confidence = results[0]['score']
|
13 |
+
|
14 |
+
explanation = f"This article is classified as **{label.upper()}** with a confidence of **{confidence*100:.2f}%**.\n\n"
|
15 |
+
explanation += "### Full Scores:\n"
|
16 |
+
for r in results:
|
17 |
+
explanation += f"- {r['label']}: {r['score']*100:.2f}%\n"
|
18 |
+
|
19 |
+
return explanation
|
20 |
+
|
21 |
+
# Gradio Interface
|
22 |
+
demo = gr.Interface(
|
23 |
+
fn=detect_fake_news,
|
24 |
+
inputs=gr.Textbox(lines=12, placeholder="Paste your news article here...", label="📰 News Article"),
|
25 |
+
outputs=gr.Markdown(label="🧠 Fake News Analysis"),
|
26 |
+
title="🕵️♀️ Fake News Detector",
|
27 |
+
description="Paste a news article. This app will classify it as FAKE or REAL using a BERT-based model."
|
28 |
+
)
|
29 |
+
|
30 |
+
demo.launch()
|