import gradio as gr from transformers import pipeline # Use a valid public model classifier = pipeline("text-classification", model="michiyasunaga/BERT-fake-news-detection") def detect_fake_news(text): result = classifier(text)[0] label = result['label'] score = result['score'] explanation = ( f"The model predicts this news is **{label}** " f"with a confidence of **{score:.2f}**.\n\n" "🧠 This is based on BERT fine-tuned on a fake news dataset." ) return explanation demo = gr.Interface(fn=detect_fake_news, inputs=gr.Textbox(lines=10, placeholder="Paste your news article here..."), outputs="markdown", title="🕵️ Fake News Detector", description="An NLP app that predicts whether a news article is fake or real using BERT.") demo.launch()