File size: 4,504 Bytes
eca7f1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import random
import pandas as pd
import streamlit as st
import pydeck as pdk
from datetime import datetime, timedelta

# ---- Constants ----
TOTAL_POLES = 200  # 50 poles per site
SITES = {
    "Hyderabad": [17.385044, 78.486671],
    "Gadwal": [16.2351, 77.8052],
    "Kurnool": [15.8281, 78.0373],
    "Bangalore": [12.9716, 77.5946]
}

# ---- Helper Functions ----
def generate_location(base_lat, base_lon):
    return [
        base_lat + random.uniform(-0.02, 0.02),
        base_lon + random.uniform(-0.02, 0.02)
    ]

def simulate_pole(pole_id, site_name):
    lat, lon = generate_location(*SITES[site_name])
    solar_kwh = round(random.uniform(3.0, 7.5), 2)
    wind_kwh = round(random.uniform(0.5, 2.0), 2)
    power_required = round(random.uniform(4.0, 8.0), 2)
    total_power = solar_kwh + wind_kwh
    power_status = 'Sufficient' if total_power >= power_required else 'Insufficient'

    tilt_angle = round(random.uniform(0, 45), 2)
    vibration = round(random.uniform(0, 5), 2)
    camera_status = random.choice(['Online', 'Offline'])

    alert_level = 'Green'
    if tilt_angle > 30 or vibration > 3:
        alert_level = 'Yellow'
    if tilt_angle > 40 or vibration > 4.5:
        alert_level = 'Red'

    health_score = max(0, 100 - (tilt_angle + vibration * 10))
    timestamp = datetime.now() - timedelta(hours=random.randint(0, 6))

    return {
        'Pole ID': f'{site_name[:3].upper()}-{pole_id:03}',
        'Site': site_name,
        'Latitude': lat,
        'Longitude': lon,
        'Solar (kWh)': solar_kwh,
        'Wind (kWh)': wind_kwh,
        'Power Required (kWh)': power_required,
        'Total Power (kWh)': total_power,
        'Power Status': power_status,
        'Tilt Angle (Β°)': tilt_angle,
        'Vibration (g)': vibration,
        'Camera Status': camera_status,
        'Health Score': round(health_score, 2),
        'Alert Level': alert_level,
        'Last Checked': timestamp.strftime('%Y-%m-%d %H:%M:%S')
    }

# ---- Streamlit UI ----
st.set_page_config(page_title="Smart Pole Monitoring", layout="wide")
st.title("🌍 Smart Renewable Pole Monitoring - Multi-Site")

selected_site = st.text_input("Enter site to view (Hyderabad, Gadwal, Kurnool, Bangalore):", "Hyderabad")

if selected_site in SITES:
    with st.spinner(f"Simulating poles at {selected_site}..."):
        poles_data = [simulate_pole(i + 1 + j * 50, site) for j, site in enumerate(SITES) for i in range(50)]
        df = pd.DataFrame(poles_data)
        site_df = df[df['Site'] == selected_site]

    # Summary Metrics
    col1, col2, col3 = st.columns(3)
    col1.metric("Total Poles", site_df.shape[0])
    col2.metric("Red Alerts", site_df[site_df['Alert Level'] == 'Red'].shape[0])
    col3.metric("Power Insufficiencies", site_df[site_df['Power Status'] == 'Insufficient'].shape[0])

    # Table View
    st.subheader(f"πŸ“‹ Pole Data Table for {selected_site}")
    with st.expander("Filter Options"):
        alert_filter = st.multiselect("Alert Level", options=site_df['Alert Level'].unique(), default=site_df['Alert Level'].unique())
        camera_filter = st.multiselect("Camera Status", options=site_df['Camera Status'].unique(), default=site_df['Camera Status'].unique())

    filtered_df = site_df[(site_df['Alert Level'].isin(alert_filter)) & (site_df['Camera Status'].isin(camera_filter))]
    st.dataframe(filtered_df, use_container_width=True)

    # Charts
    st.subheader("πŸ“Š Energy Generation Comparison")
    st.bar_chart(site_df[['Solar (kWh)', 'Wind (kWh)']].mean())

    st.subheader("πŸ“ˆ Tilt vs. Vibration")
    st.scatter_chart(site_df[['Tilt Angle (Β°)', 'Vibration (g)']])

    # Map with Red Alerts
    st.subheader("πŸ“ Red Alert Pole Locations")
    red_df = site_df[site_df['Alert Level'] == 'Red']
    if not red_df.empty:
        st.pydeck_chart(pdk.Deck(
            initial_view_state=pdk.ViewState(
                latitude=SITES[selected_site][0],
                longitude=SITES[selected_site][1],
                zoom=12,
                pitch=50
            ),
            layers=[
                pdk.Layer(
                    'ScatterplotLayer',
                    data=red_df,
                    get_position='[Longitude, Latitude]',
                    get_color='[255, 0, 0, 160]',
                    get_radius=100,
                )
            ]
        ))
    else:
        st.info("No red alerts at this time.")

else:
    st.warning("Invalid site. Please enter one of: Hyderabad, Gadwal, Kurnool, Bangalore")