Sanjayraju30 commited on
Commit
f0d5d5d
·
verified ·
1 Parent(s): df1528b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +31 -127
app.py CHANGED
@@ -1,128 +1,32 @@
1
- import random
2
- import pandas as pd
3
- import streamlit as st
4
- import pydeck as pdk
5
- from datetime import datetime, timedelta
6
-
7
- # ---- Constants ----
8
- POLES_PER_SITE = 12
9
- SITES = {
10
- "Hyderabad": [17.385044, 78.486671],
11
- "Gadwal": [16.2351, 77.8052],
12
- "Kurnool": [15.8281, 78.0373],
13
- "Ballari": [12.9716, 77.5946]
14
- }
15
-
16
- # ---- Helper Functions ----
17
- def generate_location(base_lat, base_lon):
18
- return [
19
- base_lat + random.uniform(-0.02, 0.02),
20
- base_lon + random.uniform(-0.02, 0.02)
21
- ]
22
-
23
- def simulate_pole(pole_id, site_name):
24
- lat, lon = generate_location(*SITES[site_name])
25
- solar_kwh = round(random.uniform(3.0, 7.5), 2)
26
- wind_kwh = round(random.uniform(0.5, 2.0), 2)
27
- power_required = round(random.uniform(4.0, 8.0), 2)
28
- total_power = solar_kwh + wind_kwh
29
- power_status = 'Sufficient' if total_power >= power_required else 'Insufficient'
30
-
31
- tilt_angle = round(random.uniform(0, 45), 2)
32
- vibration = round(random.uniform(0, 5), 2)
33
- camera_status = random.choice(['Online', 'Offline'])
34
-
35
- alert_level = 'Green'
36
- anomaly_details = []
37
- if tilt_angle > 30 or vibration > 3:
38
- alert_level = 'Yellow'
39
- anomaly_details.append("Tilt or Vibration threshold exceeded.")
40
- if tilt_angle > 40 or vibration > 4.5:
41
- alert_level = 'Red'
42
- anomaly_details.append("Critical tilt or vibration detected.")
43
-
44
- health_score = max(0, 100 - (tilt_angle + vibration * 10))
45
- timestamp = datetime.now() - timedelta(hours=random.randint(0, 6))
46
-
47
- return {
48
- 'Pole ID': f'{site_name[:3].upper()}-{pole_id:03}',
49
- 'Site': site_name,
50
- 'Latitude': lat,
51
- 'Longitude': lon,
52
- 'Solar (kWh)': solar_kwh,
53
- 'Wind (kWh)': wind_kwh,
54
- 'Power Required (kWh)': power_required,
55
- 'Total Power (kWh)': total_power,
56
- 'Power Status': power_status,
57
- 'Tilt Angle (°)': tilt_angle,
58
- 'Vibration (g)': vibration,
59
- 'Camera Status': camera_status,
60
- 'Health Score': round(health_score, 2),
61
- 'Alert Level': alert_level,
62
- 'Anomalies': "; ".join(anomaly_details),
63
- 'Last Checked': timestamp.strftime('%Y-%m-%d %H:%M:%S')
64
- }
65
-
66
- # ---- Streamlit UI ----
67
- st.set_page_config(page_title="Smart Pole Monitoring", layout="wide")
68
- st.title("🌍 Smart Renewable Pole Monitoring - Multi-Site")
69
-
70
- selected_site = st.text_input("Enter site to view (Hyderabad, Gadwal, Kurnool, Ballari):", "Hyderabad")
71
-
72
- if selected_site in SITES:
73
- with st.spinner(f"Simulating poles at {selected_site}..."):
74
- poles_data = [simulate_pole(i + 1, site) for site in SITES for i in range(POLES_PER_SITE)]
75
- df = pd.DataFrame(poles_data)
76
- site_df = df[df['Site'] == selected_site]
77
-
78
- # Summary Metrics
79
- col1, col2, col3 = st.columns(3)
80
- col1.metric("Total Poles", site_df.shape[0])
81
- col2.metric("Red Alerts", site_df[site_df['Alert Level'] == 'Red'].shape[0])
82
- col3.metric("Power Insufficiencies", site_df[site_df['Power Status'] == 'Insufficient'].shape[0])
83
-
84
- # Table View
85
- st.subheader(f"📋 Pole Data Table for {selected_site}")
86
- with st.expander("Filter Options"):
87
- alert_filter = st.multiselect("Alert Level", options=site_df['Alert Level'].unique(), default=site_df['Alert Level'].unique())
88
- camera_filter = st.multiselect("Camera Status", options=site_df['Camera Status'].unique(), default=site_df['Camera Status'].unique())
89
-
90
- filtered_df = site_df[(site_df['Alert Level'].isin(alert_filter)) & (site_df['Camera Status'].isin(camera_filter))]
91
- st.dataframe(filtered_df, use_container_width=True)
92
-
93
- # Charts
94
- st.subheader("📊 Energy Generation Comparison")
95
- st.bar_chart(site_df[['Solar (kWh)', 'Wind (kWh)']].mean())
96
-
97
- st.subheader("📈 Tilt vs. Vibration")
98
- st.scatter_chart(site_df[['Tilt Angle (°)', 'Vibration (g)']])
99
-
100
- # Map with Red Alerts
101
- st.subheader("📍 Red Alert Pole Locations")
102
- red_df = site_df[site_df['Alert Level'] == 'Red']
103
- if not red_df.empty:
104
- st.pydeck_chart(pdk.Deck(
105
- initial_view_state=pdk.ViewState(
106
- latitude=SITES[selected_site][0],
107
- longitude=SITES[selected_site][1],
108
- zoom=12,
109
- pitch=50
110
- ),
111
- layers=[
112
- pdk.Layer(
113
- 'ScatterplotLayer',
114
- data=red_df,
115
- get_position='[Longitude, Latitude]',
116
- get_color='[255, 0, 0, 160]',
117
- get_radius=100,
118
- )
119
- ]
120
- ))
121
- st.markdown("<h3 style='text-align: center;'>Red Alert Poles are Blinking</h3>", unsafe_allow_html=True)
122
  else:
123
- st.info("No red alerts at this time.")
124
-
125
- else:
126
- st.warning("Invalid site. Please enter one of: Hyderabad, Gadwal, Kurnool, Ballari")
127
-
128
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Map with Alert Level Color Coding
2
+ st.subheader("📍 Pole Alert Levels (Green, Yellow, Red)")
3
+
4
+ def alert_level_to_color(level):
5
+ if level == 'Red':
6
+ return [255, 0, 0, 160] # Red
7
+ elif level == 'Yellow':
8
+ return [255, 255, 0, 160] # Yellow
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  else:
10
+ return [0, 255, 0, 160] # Green
11
+
12
+ # Apply color mapping
13
+ site_df['Color'] = site_df['Alert Level'].apply(alert_level_to_color)
14
+
15
+ st.pydeck_chart(pdk.Deck(
16
+ initial_view_state=pdk.ViewState(
17
+ latitude=SITES[selected_site][0],
18
+ longitude=SITES[selected_site][1],
19
+ zoom=12,
20
+ pitch=50
21
+ ),
22
+ layers=[
23
+ pdk.Layer(
24
+ 'ScatterplotLayer',
25
+ data=site_df,
26
+ get_position='[Longitude, Latitude]',
27
+ get_color='Color',
28
+ get_radius=100,
29
+ )
30
+ ]
31
+ ))
32
+ st.markdown("<h3 style='text-align: center;'>Poles Color-coded by Alert Level</h3>", unsafe_allow_html=True)