Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,3 @@
|
|
1 |
-
|
2 |
-
You said:
|
3 |
import random
|
4 |
import pandas as pd
|
5 |
import streamlit as st
|
@@ -130,138 +128,6 @@ st.pydeck_chart(pdk.Deck(
|
|
130 |
}
|
131 |
))
|
132 |
|
133 |
-
# ---- Data Table ----
|
134 |
-
st.subheader("📋 Detailed Pole Information")
|
135 |
-
st.dataframe(filtered_df, use_container_width=True) import random
|
136 |
-
import pandas as pd
|
137 |
-
import streamlit as st
|
138 |
-
import pydeck as pdk
|
139 |
-
|
140 |
-
# ---- Area-Specific Configuration ----
|
141 |
-
AREA_DETAILS = {
|
142 |
-
"Hyderabad": {
|
143 |
-
"coords": [17.4036, 78.5247],
|
144 |
-
"area_name": "Ramanthapur Dairy Farm",
|
145 |
-
"purpose": "Dairy Farm"
|
146 |
-
},
|
147 |
-
"Ballari": {
|
148 |
-
"coords": [15.1468, 76.9237],
|
149 |
-
"area_name": "Cowl Bazar Power Station",
|
150 |
-
"purpose": "Power Station"
|
151 |
-
},
|
152 |
-
"Gadwal": {
|
153 |
-
"coords": [16.2315, 77.7965],
|
154 |
-
"area_name": "Bheem Nagar Solar Station",
|
155 |
-
"purpose": "Solar Station"
|
156 |
-
},
|
157 |
-
"Kurnool": {
|
158 |
-
"coords": [15.8281, 78.0373],
|
159 |
-
"area_name": "Venkata Ramana Agriculture Field",
|
160 |
-
"purpose": "Agriculture Monitoring"
|
161 |
-
}
|
162 |
-
}
|
163 |
-
|
164 |
-
POLES_PER_SITE = 12
|
165 |
-
|
166 |
-
# ---- Generate Poles with Anomalies ----
|
167 |
-
def generate_open_area_poles(site_name, center_lat, center_lon, area, purpose):
|
168 |
-
poles = []
|
169 |
-
spacing = 0.0006
|
170 |
-
anomalies_options = ['None', 'Sensor Fault', 'Overheat', 'Power Surge']
|
171 |
-
anomaly_weights = [0.6, 0.2, 0.1, 0.1]
|
172 |
-
|
173 |
-
for i in range(POLES_PER_SITE):
|
174 |
-
lat = center_lat + random.uniform(-0.0002, 0.0002)
|
175 |
-
lon = center_lon + (i - POLES_PER_SITE // 2) * spacing
|
176 |
-
alert_level = random.choices(['Green', 'Yellow', 'Red'], weights=[6, 4, 2])[0]
|
177 |
-
anomaly = random.choices(anomalies_options, weights=anomaly_weights)[0]
|
178 |
-
|
179 |
-
poles.append({
|
180 |
-
"Pole ID": f"{site_name[:3].upper()}-{i+1:03}",
|
181 |
-
"Site": site_name,
|
182 |
-
"Latitude": lat,
|
183 |
-
"Longitude": lon,
|
184 |
-
"Alert Level": alert_level,
|
185 |
-
"Health Score": round(random.uniform(70, 100), 2),
|
186 |
-
"Power Status": random.choice(['Sufficient', 'Insufficient']),
|
187 |
-
"Camera Status": random.choice(['Online', 'Offline']),
|
188 |
-
"Location Area": area,
|
189 |
-
"Purpose": purpose,
|
190 |
-
"Anomalies": anomaly
|
191 |
-
})
|
192 |
-
return poles
|
193 |
-
|
194 |
-
# ---- Prepare Full DataFrame ----
|
195 |
-
all_poles = []
|
196 |
-
for site, details in AREA_DETAILS.items():
|
197 |
-
poles = generate_open_area_poles(site, *details['coords'], details['area_name'], details['purpose'])
|
198 |
-
all_poles.extend(poles)
|
199 |
-
|
200 |
-
df = pd.DataFrame(all_poles)
|
201 |
-
|
202 |
-
# ---- Streamlit UI ----
|
203 |
-
st.set_page_config(page_title="Smart Pole Visual Dashboard", layout="wide")
|
204 |
-
st.title("🌐 Smart Renewable Pole Monitoring Dashboard")
|
205 |
-
|
206 |
-
site = st.selectbox("📍 Select a site location:", list(AREA_DETAILS.keys()))
|
207 |
-
selected = AREA_DETAILS[site]
|
208 |
-
|
209 |
-
# ---- Filtered View ----
|
210 |
-
filtered_df = df[df["Site"] == site]
|
211 |
-
|
212 |
-
# ---- Display Site Description ----
|
213 |
-
st.markdown(f"### 📌 Location: **{selected['area_name']}**")
|
214 |
-
st.markdown(f"🔧 **Poles Purpose**: {selected['purpose']}")
|
215 |
-
|
216 |
-
# ---- KPI Metrics ----
|
217 |
-
col1, col2, col3 = st.columns(3)
|
218 |
-
col1.metric("Total Poles", POLES_PER_SITE)
|
219 |
-
col2.metric("🔴 Red Alerts", filtered_df[filtered_df["Alert Level"] == "Red"].shape[0])
|
220 |
-
col3.metric("📷 Offline Cameras", filtered_df[filtered_df["Camera Status"] == "Offline"].shape[0])
|
221 |
-
|
222 |
-
# ---- Alert Level to Color ----
|
223 |
-
def alert_color(alert):
|
224 |
-
return {
|
225 |
-
"Green": [0, 255, 0, 160],
|
226 |
-
"Yellow": [255, 255, 0, 160],
|
227 |
-
"Red": [255, 0, 0, 160]
|
228 |
-
}[alert]
|
229 |
-
|
230 |
-
filtered_df = filtered_df.copy()
|
231 |
-
filtered_df["Color"] = filtered_df["Alert Level"].apply(alert_color)
|
232 |
-
|
233 |
-
# ---- Map Visualization ----
|
234 |
-
st.subheader("🗺️ Pole Location & Health Status")
|
235 |
-
st.pydeck_chart(pdk.Deck(
|
236 |
-
initial_view_state=pdk.ViewState(
|
237 |
-
latitude=selected['coords'][0],
|
238 |
-
longitude=selected['coords'][1],
|
239 |
-
zoom=16.5,
|
240 |
-
pitch=45
|
241 |
-
),
|
242 |
-
layers=[
|
243 |
-
pdk.Layer(
|
244 |
-
"ScatterplotLayer",
|
245 |
-
data=filtered_df,
|
246 |
-
get_position='[Longitude, Latitude]',
|
247 |
-
get_color='Color',
|
248 |
-
get_radius=30,
|
249 |
-
pickable=True
|
250 |
-
)
|
251 |
-
],
|
252 |
-
tooltip={
|
253 |
-
"html": "<b>Pole ID:</b> {Pole ID}<br/>"
|
254 |
-
"<b>Location:</b> {Location Area}<br/>"
|
255 |
-
"<b>Purpose:</b> {Purpose}<br/>"
|
256 |
-
"<b>Health Score:</b> {Health Score}<br/>"
|
257 |
-
"<b>Alert Level:</b> {Alert Level}<br/>"
|
258 |
-
"<b>Camera:</b> {Camera Status}<br/>"
|
259 |
-
"<b>Power:</b> {Power Status}<br/>"
|
260 |
-
"<b>Anomaly:</b> {Anomalies}",
|
261 |
-
"style": {"color": "white", "backgroundColor": "black"}
|
262 |
-
}
|
263 |
-
))
|
264 |
-
|
265 |
# ---- Data Table ----
|
266 |
st.subheader("📋 Detailed Pole Information")
|
267 |
st.dataframe(filtered_df, use_container_width=True)
|
|
|
|
|
|
|
1 |
import random
|
2 |
import pandas as pd
|
3 |
import streamlit as st
|
|
|
128 |
}
|
129 |
))
|
130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
# ---- Data Table ----
|
132 |
st.subheader("📋 Detailed Pole Information")
|
133 |
st.dataframe(filtered_df, use_container_width=True)
|