Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import pandas as pd
|
3 |
+
import streamlit as st
|
4 |
+
import pydeck as pdk
|
5 |
+
from datetime import datetime, timedelta
|
6 |
+
|
7 |
+
# ---- Constants ----
|
8 |
+
TOTAL_POLES = 200 # 50 poles per site
|
9 |
+
SITES = {
|
10 |
+
"Hyderabad": [17.385044, 78.486671],
|
11 |
+
"Gadwal": [16.2351, 77.8052],
|
12 |
+
"Kurnool": [15.8281, 78.0373],
|
13 |
+
"Bangalore": [12.9716, 77.5946]
|
14 |
+
}
|
15 |
+
|
16 |
+
# ---- Helper Functions ----
|
17 |
+
def generate_location(base_lat, base_lon):
|
18 |
+
return [
|
19 |
+
base_lat + random.uniform(-0.02, 0.02),
|
20 |
+
base_lon + random.uniform(-0.02, 0.02)
|
21 |
+
]
|
22 |
+
|
23 |
+
def simulate_pole(pole_id, site_name):
|
24 |
+
lat, lon = generate_location(*SITES[site_name])
|
25 |
+
solar_kwh = round(random.uniform(3.0, 7.5), 2)
|
26 |
+
wind_kwh = round(random.uniform(0.5, 2.0), 2)
|
27 |
+
power_required = round(random.uniform(4.0, 8.0), 2)
|
28 |
+
total_power = solar_kwh + wind_kwh
|
29 |
+
power_status = 'Sufficient' if total_power >= power_required else 'Insufficient'
|
30 |
+
|
31 |
+
tilt_angle = round(random.uniform(0, 45), 2)
|
32 |
+
vibration = round(random.uniform(0, 5), 2)
|
33 |
+
camera_status = random.choice(['Online', 'Offline'])
|
34 |
+
|
35 |
+
alert_level = 'Green'
|
36 |
+
if tilt_angle > 30 or vibration > 3:
|
37 |
+
alert_level = 'Yellow'
|
38 |
+
if tilt_angle > 40 or vibration > 4.5:
|
39 |
+
alert_level = 'Red'
|
40 |
+
|
41 |
+
health_score = max(0, 100 - (tilt_angle + vibration * 10))
|
42 |
+
timestamp = datetime.now() - timedelta(hours=random.randint(0, 6))
|
43 |
+
|
44 |
+
return {
|
45 |
+
'Pole ID': f'{site_name[:3].upper()}-{pole_id:03}',
|
46 |
+
'Site': site_name,
|
47 |
+
'Latitude': lat,
|
48 |
+
'Longitude': lon,
|
49 |
+
'Solar (kWh)': solar_kwh,
|
50 |
+
'Wind (kWh)': wind_kwh,
|
51 |
+
'Power Required (kWh)': power_required,
|
52 |
+
'Total Power (kWh)': total_power,
|
53 |
+
'Power Status': power_status,
|
54 |
+
'Tilt Angle (ยฐ)': tilt_angle,
|
55 |
+
'Vibration (g)': vibration,
|
56 |
+
'Camera Status': camera_status,
|
57 |
+
'Health Score': round(health_score, 2),
|
58 |
+
'Alert Level': alert_level,
|
59 |
+
'Last Checked': timestamp.strftime('%Y-%m-%d %H:%M:%S')
|
60 |
+
}
|
61 |
+
|
62 |
+
# ---- Streamlit UI ----
|
63 |
+
st.set_page_config(page_title="Smart Pole Monitoring", layout="wide")
|
64 |
+
st.title("๐ Smart Renewable Pole Monitoring - Multi-Site")
|
65 |
+
|
66 |
+
selected_site = st.text_input("Enter site to view (Hyderabad, Gadwal, Kurnool, Bangalore):", "Hyderabad")
|
67 |
+
|
68 |
+
if selected_site in SITES:
|
69 |
+
with st.spinner(f"Simulating poles at {selected_site}..."):
|
70 |
+
poles_data = [simulate_pole(i + 1 + j * 50, site) for j, site in enumerate(SITES) for i in range(50)]
|
71 |
+
df = pd.DataFrame(poles_data)
|
72 |
+
site_df = df[df['Site'] == selected_site]
|
73 |
+
|
74 |
+
# Summary Metrics
|
75 |
+
col1, col2, col3 = st.columns(3)
|
76 |
+
col1.metric("Total Poles", site_df.shape[0])
|
77 |
+
col2.metric("Red Alerts", site_df[site_df['Alert Level'] == 'Red'].shape[0])
|
78 |
+
col3.metric("Power Insufficiencies", site_df[site_df['Power Status'] == 'Insufficient'].shape[0])
|
79 |
+
|
80 |
+
# Table View
|
81 |
+
st.subheader(f"๐ Pole Data Table for {selected_site}")
|
82 |
+
with st.expander("Filter Options"):
|
83 |
+
alert_filter = st.multiselect("Alert Level", options=site_df['Alert Level'].unique(), default=site_df['Alert Level'].unique())
|
84 |
+
camera_filter = st.multiselect("Camera Status", options=site_df['Camera Status'].unique(), default=site_df['Camera Status'].unique())
|
85 |
+
|
86 |
+
filtered_df = site_df[(site_df['Alert Level'].isin(alert_filter)) & (site_df['Camera Status'].isin(camera_filter))]
|
87 |
+
st.dataframe(filtered_df, use_container_width=True)
|
88 |
+
|
89 |
+
# Charts
|
90 |
+
st.subheader("๐ Energy Generation Comparison")
|
91 |
+
st.bar_chart(site_df[['Solar (kWh)', 'Wind (kWh)']].mean())
|
92 |
+
|
93 |
+
st.subheader("๐ Tilt vs. Vibration")
|
94 |
+
st.scatter_chart(site_df[['Tilt Angle (ยฐ)', 'Vibration (g)']])
|
95 |
+
|
96 |
+
# Map with Red Alerts
|
97 |
+
st.subheader("๐ Red Alert Pole Locations")
|
98 |
+
red_df = site_df[site_df['Alert Level'] == 'Red']
|
99 |
+
if not red_df.empty:
|
100 |
+
st.pydeck_chart(pdk.Deck(
|
101 |
+
initial_view_state=pdk.ViewState(
|
102 |
+
latitude=SITES[selected_site][0],
|
103 |
+
longitude=SITES[selected_site][1],
|
104 |
+
zoom=12,
|
105 |
+
pitch=50
|
106 |
+
),
|
107 |
+
layers=[
|
108 |
+
pdk.Layer(
|
109 |
+
'ScatterplotLayer',
|
110 |
+
data=red_df,
|
111 |
+
get_position='[Longitude, Latitude]',
|
112 |
+
get_color='[255, 0, 0, 160]',
|
113 |
+
get_radius=100,
|
114 |
+
)
|
115 |
+
]
|
116 |
+
))
|
117 |
+
else:
|
118 |
+
st.info("No red alerts at this time.")
|
119 |
+
|
120 |
+
else:
|
121 |
+
st.warning("Invalid site. Please enter one of: Hyderabad, Gadwal, Kurnool, Bangalore")
|