Spaces:
Sleeping
Sleeping
File size: 1,265 Bytes
53267d3 bb607ff 53267d3 bb607ff 53267d3 bb607ff 53267d3 bb607ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
import gradio as gr
from risk_model import predict_risk, retrain_model, get_history_df
with gr.Blocks() as demo:
gr.Markdown("## 🔥 Heating Mantle Safety Risk Predictor")
with gr.Row():
temp = gr.Number(label="Max Temperature (°C)", value=100)
duration = gr.Number(label="Duration (min)", value=30)
with gr.Row():
predict_btn = gr.Button("🔍 Predict")
retrain_btn = gr.Button("🔁 Retrain Model")
result = gr.Textbox(label="Risk Prediction")
score = gr.Textbox(label="Confidence (%)")
retrain_output = gr.Textbox(label="Retrain Status")
history_table = gr.Dataframe(headers=["Temperature", "Duration", "Risk", "Confidence"], label="📈 Prediction History")
def classify(temp, duration):
if temp <= 0 or duration <= 0:
return "❌ Invalid Input", "Use values > 0", get_history_df()
risk, confidence = predict_risk(temp, duration)
emoji = "🟢" if risk == "Low" else "🟠" if risk == "Moderate" else "🔴"
return f"{emoji} {risk}", f"{confidence}%", get_history_df()
predict_btn.click(classify, inputs=[temp, duration], outputs=[result, score, history_table])
retrain_btn.click(retrain_model, outputs=[retrain_output])
demo.launch()
|